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for homotopico.com

September 23, 2018

In quantum mechanics, it is often stated that the momentum [operator] is the generator of
translations. However, most texts fail to give a satisfactory justification to this claim, if any is
given at all. In some cases, the proof is simply begging the question. In others, the burden of
proof is shifted to classical mechanics, stating that “this was already proved in classical mechanics”.
Again, most standard texts of classical mechanics fail to give a clear proof of this claim, although
the mathematical apparatus is there. What we will do here is define precisely what it means
for observable to be a generator of a group of transformations, both in quantum and classical
mechanics, and prove that, indeed, the momentum observable is the generator of translations in
classical mechanics.

The origin of the question

We define the translation operator OTa acting on elements  2 L2.R/ (the Hilbert space of square-
integrable complex functions over R) by, of course, translating the wavefunction a distance a to the
right:

. OTa /.x/ WD  .x � a/: (1)

This operator is actually a whole family of operators that depend on the parameter a. It is clear
that OT0 is the identity operator. Now since this family of operators is particularly well-behaved1, it
has an infinitesimal generator, which is some operator Ow such that

OTa D exp .�ia Ow/ : (2)

Yes, I know that the standard name for this generator is Op, but I am trying to remove any possible
meaning to this operator. For the time being, we only know that Ow is the generator of translations.
That’s why I don’t call it Op.

What does Ow look like? One way to calculate the infinitesimal generator of a family of operators
is by evaluating the derivative at a D 0. If we expand the right-hand side of equation 2 as a power
series, then

exp .�ia Ow/ D

1X
nD0

1

nŠ
.�ia Ow/n; (3)

then it follows that
d

da

ˇ̌̌̌
aD0

OTa D
d

da

ˇ̌̌̌
aD0

exp .�ia Ow/ D �i Ow: (4)

So let  be any function on L2.R/. We have that

d

da

ˇ̌̌̌
aD0

OTa .x/ D
d

da

ˇ̌̌̌
aD0

 .x � a/ D �
d

dx
 .x/; (5)

1That is, it is a one-parameter absolutely continuous group.
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so we can say that the infinitesimal generator is

Ow D �i
d

dx
: (6)

And hey, look at that. It turns out that this is what we call the momentum operator in quantum
mechanics.

However, it is not clear at all why the operator �i d
dx should be given the highly suggestive

name of “momentum”. So this it’s not that the generator of translations is momentum because it
has the form �i d

dx , but the other way around:

We say that �i d
dx is the momentum operator, because it is the one that generates translations.

Therefore, the question is shifted: Why do we give the name “momentum” to the
operator that generates translations?

The usual answers

If you only want a half-plausible argument, here it goes. Let Ox be the position operator, that is the
expectation value h j Ox i is the expected value for the position of a particle in state  . It can be
shown that the position operator acts on wavefunctions by multiplication by the variable x, i.e.

. Ox /.x/ D x .x/: (7)

This equation can also be used to define Ox. Now we want to compute the commutator Œ Ox; Ow�. On
one hand, we have:

. Ox Ow /.x/ D �ix
d

dx
 .x/; (8)

but on the other hand,

. Ow Ox /.x/ D �i
d

dx
.x .x// D �i

�
 .x/C x

d

dx
 .x/

�
: (9)

Then, clearly
Œ Ox; Ow� .x/ D i .x/; (10)

and so Œ Ox; Ow� D i OI . Now we consider the “quantization rule” that turns classical observables f into
Hermitian operators Of and that turns Poisson brackets almost into Lie brackets

ff; gg 7! i
h
Of ; Og

i
; (11)

and what we do is go backwards! We found an operator Ow that satisfies the commutation relation
Œ Ox; Ow� D i OI , so the classical observables they come from satisfy the Poisson-bracket relation fx;wg D
1. We know that Ox is the position operator, so x must be the position observable. On the other
hand, we know that for the canonical momentum p,

fx; pg D
@x

@x

@p

@p
�
@x

@p

@p

@x
D 1: (12)

We can clearly see that fx; pg D fx;wg D 1, so this suggests that w D p! And we’re done. w is the
momentum, so the operator Ow is the momentum operator.

But wait a minute...
The relation

fx;wg D 1 (13)
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is not enough to define w! This is because the operator f 7! fx; f g is degenerate. As a trivial
example,

fx; p C xg D 1; (14)

and actually, for any function f .x/ that does not depend on p, it follows that

fx; p C f .x/g D 1: (15)

This means that w is an observable of the form w D p C f .x/ for some function f .x/. At this
point you might think “eh, close enough”. And fair enough, then you’re done!

But I’m not thoroughly (actually, not at all) satisfied. There is another clue though. This
previous argument is one of two that I’ve seen in QM books. The other one is as follows:

In classical mechanics it is shown that momentum is the generator of translations.

And well, yes, that could be enough for our purposes. We can’t expect every new theory to
work out of the box and be able to stand by itself, right? When we construct a new theory
from a mathematical perspective, we look back to other theories that are well-established and
we understand, look for analogies and similarities, and interpret the symbols in such a way that
everything is as consistent as possible with what came before.

Therefore it is quite reasonable to say that this operator Ow is the momentum operator if we
already know from classical mechanics that the generator of translations is the momentum. We’ve
shown that in quantum mechanics, translations also have infinitesimal generators, so it is natural
to interpret those as momenta.

Again, that is if we already know from classical mechanics that momentum is the generator of
translations. And I think I missed that lecture? That’s a big “if”.

That quote up there shifts the burden of proof to classical mechanics. So what we’re going to do
is plunge into classical mechanics and try to show that momentum is the generator of translations
from two different points of view: the “standard” Goldstein point-of-view, and the more modern
symplectic geometry point-of-view. We will see from both that we can reasonably show that, in a
certain way, momentum is the generator of translations.

The standard point of view

More precisely, what we will prove is the following:
To each (classical) observable f we can canonically assign a one-parameter group of canonical
transformations ˆa that preserve f . In this case, we say that f generates ˆa. When we choose
the canonical momentum f D p, the resulting transformations are translations, and thus we say
that p is the generator of translations.

In this first section, we will do it in a bit of a dirty way. If infinitesimals make you uncomfortable
(completely understandable), then always note that when we write, e.g. Qx D xC�X , what we mean
is that Qx D Qx.�/ is a function of �, that Qx.0/ D x, and X D lim�!0

1
�
Qx.�/. If you would like to see

a more concise proof that requires a bit of differential topology, skip to the next section.
Consider some system with phase space S, with canonical coordinates qi ; pj , and let f be an

arbitrary observable. We want to find a canonical transformation2 Qi D Qi .q; p/, Pj D Pj .q; p/

that preserves f and depends on only one parameter �. For small �, we can write

Qi .�/ D qi C �Ai

Pj .�/ D pj C �Bj
; (16)

2And an additional question that I would like to explore is “what’s the huge deal about canonical transformations”?
We know that they preserve the structure of the Hamilton-Jacobi equations, but not necessarily the Hamiltonian, so
that doesn’t seem like much, does it? Well it turns out that the structure itself of the equations has an interesting
and beautiful mathematical background... But I’m saving that for later.
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with Ai ; Bj functions of q; p that we want to determine. Since we want these transformations to
be canonical, the Poisson brackets must be conserved, son

qi ; pi

o
D 1 D

n
Qi ; Pi

o
D

n
qi C �Ai ; pi C �Bi

o
D

n
qi ; pi

o
C �

�n
Ai ; pi

o
C

n
qi ; Bi

o�
CO.�2/:

(17)

Then, working up to first order in �, we require thatn
Ai ; pi

o
C

n
qi ; Bi

o
D 0: (18)

Unravel these Poisson brackets,n
Ai ; pi

o
D

X
k

 
@Ai

@qk

@pi

@pk
�
@Ai

@pk

@pi

@qk

!
D
@Ai

@qi
(19)

n
qi ; Bi

o
D

X
k

 
@qi

@qk

@Bi

@pk
�
@qi

@pk

@Bi

@qk

!
D
@Bi

@pi
; (20)

then we require Ai ; Bi to be such that

@Ai

@qi
C
@Bi

@pi
D 0: (21)

One way to guarantee that condition (21) is satisfied is by finding some other observable, say g,
and write

Ai D
@g

@pi

Bj D �
@g

@qj

: (22)

However, not every g will work, since we also require the transformation to preserve the observable
f . So again, for small �, we can write

f
�
Qi ; Pj

�
D f

�
qi C �Ai ; pj C �Bj

�
D f

�
qi ; pj

�
C �

X
k

�
Ak

@f

@qk
C Bk

@f

@pk

�
CO.�2/:

(23)

Since we require the transformation to preserve f , then f
�
Qi ; Pj

�
D f .qi ; pj / and thusX

k

�
Ak

@f

@qk
C Bk

@f

@pk

�
D 0: (24)

But again, if we assume that Ai ; Bj come from an observable g as in equation (22), this condition
becomes X

k

�
@g

@pk

@f

@qk
�
@g

@qk

@f

@pk

�
D ff; gg D 0: (25)
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Therefore the admissible observables g that can be used for equation (22) are such that ff; gg D 0.
Which one is the absolute simplest one to choose? Well f itself! This works since ff; f g D 0.
Therefore the natural choice is g D f , so that the transformation for infinitesimal � is

Qi .�/ D qi C �
@f

@pi

Pj .�/ D pj � �
@f

@qj

: (26)

This equation only holds for infinitesimally small �, since we’ve been working only up to first order.
What we want now is to write the exact solution to large �. To do so, note that equation (26) gives
us a differential equation for Q and P : writing qi D Qi .0/; pj D Pj .0/, it can be easily seen that

dQi

d�
D
@f

@pi

dPj

d�
D �

@f

@qj
:

(27)

Note that these are just like the Hamilton-Jacobi equations, except that “time” is � and the “Hamil-
tonian” is f !

Now we see how any general observable changes when we do an infinitesimal transformation (26).
Let g be any observable. Then, if we start at a point .q0; p0/, and write .q1; p1/ D .Q.�/; P.�//

(I’m dropping the i; j indices), then

g
�
Qi .�/; Pj .�/

�
D g

 
qi0 C �

@f

@pj

ˇ̌̌̌
.q0;p0/

; p0;j �
@f

@qj

ˇ̌̌̌
.q0;p0/

!

g.q1; p1/ D g .q0; p0/C �
X
k

 
@f

@pk

ˇ̌̌̌
.q0;p0/

@g

@qk

ˇ̌̌̌
.q0;p0/

�
@f

@qk

ˇ̌̌̌
.q0;p0/

@g

@pk

ˇ̌̌̌
.q0;p0/

!
CO.�2/

g.q1; p1/ D g .q0; p0/C � fg; f gj.q0;p0/ CO.�2/:
(28)

How do we go to large �? Well, the last equation tells us that

d

d�
g .Q.�/; P.�// D fg; f gQ.�/;P.�/ ; (29)

therefore, if we write g.�/ D g.Q.�/; P.�//, taking the derivative with respect to � again we obtain:

d2

d�2
g .�/ D

d

d�
fg; f g� D ffg; f g ; f g� : (30)

So if we call Xf the differential operator Xf .g/ WD fg; f g, we can see that

dn

d�n
g .�/ D Xf .Xf .: : : Xf .g///� D Xf

n.g/�: (31)

And thus, by Taylor-expanding g with respect to � around � D 0, we see that

g.�/ D

1X
nD0

1

nŠ

dn

d�n

ˇ̌̌̌
�D0

g.�/ D

1X
nD0

1

nŠ
Xf

n.g/.q0;p0/ D exp
�
�Xf .0/

�
g: (32)

We call Xf the infinitesimal generator associated to f .
Alright. We should stop here for a bit and gather what we have. We have shown that for any

observable f , we can find a family of canonical transformations, which we write as Q.�/; P.�/, given
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by the set of Hamilton-Jacobi-like equations (27). Note that if we fix a starting point .q0; p0/, this
family of transformations gives rise to a curve in phase space, given by q D Q.�/; p D P.�/. Any
other observable g also changes along this curve as g.�/ D exp.�Xf .0//g, or rather as dg

d� D fg; f g.

In particular, f is constant along this curve, since d
d�f D ff; f g D 0. Therefore the family of

transformations is canonical and preserves f , as was desired.
Now here comes what was promised. If we choose f D pj , the momentum observable, then the

infinitesimal generator associated to pj , Xpj , is the differential operator

Xpj .g/ D
˚
g; pj

	
D

X
k

@g

@qk

@pj

@pk
�
@g

@pk

@pj

@qk
D

@

@qj
.g/: (33)

Ring any bells?
Furthermore, the family of transformations is the solution to the Hamilton-Jacobi-like equa-

tions (27) with f D pj , i.e.

dQi

d�
D
@pj

@pi
D ıij

dPk
d�
D �

@pj

@qk
D 0;

(34)

which is readily integrated, given an initial point q0 D Q.0/; p0 D P.0/:

Qj .�/ D q
j
0 C �I (35)

and all the other coordinates constant. This is indeed a translation in the j -th space coordinate.
So there you have it! In classical mechanics, to each observable f we assign a differential operator

Xf that generates one-parameter canonical transformations that preserve f . In the case where

f D p, the differential operator is Xp D
@
@q

, and the canonical transformations are translations!
Therefore we say that momentum is the generator of translations.

The mathematician’s way

This way is basically exactly the same as the one before, just with the more sophisticated language
of differential topology, specifically in the context of symplectic manifolds. It can be easily seen
that the results given here are exactly the same as the results given in the previous section, when
we write them in Darboux coordinates.

So first, some definitions.
A symplectic manifold is a smooth manifold M of dimension 2n endowed with a closed,

non-degenerate 2-form !, which we call a symplectic form. It can be shown that for each point
x 2 M there exists a neighborhood U of x and coordinates q1; : : : ; qn; p1; : : : ; pn such that the
symplectic form can be written as

! D dq� ^ dp�: (36)

Here we are using Einstein’s sum notation. This result is Darboux’s theorem, and the coordinates
.q�; p�/ are called Darboux coordinates.

Since ! is non-degenerate, it induces an isomorphism .�/[ W TpM! T �pM, given pointwise by
the relation

v[.u/ WD !.v; u/ (37)

for all u; v 2 TpM and all p 2M. The inverse of .�/[ is denoted by .�/] W T �pM! TpM.
This is basically all we need! Let f 2 C1.M/. Then we can define the Hamiltonian vector

field associated to f , denoted by Xf 2 X.M/, as

Xf D .df /
]: (38)
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By this definition, for any other vector field Y , we have that

!.Xf ; Y / D df .Y / D Y Œf �: (39)

Therefore an alternative definition for Xf is the unique vector field such that �Xf ! D df .
Using Cartan’s magic formula, we see that

LXf ! D �Xf .d!/C d
�
�Xf !

�
D 0: (40)

Here, the first term is zero since ! is closed (i.e. d! D 0), and the second one is zero too since
�Xf ! D df , and d2 D 0. In addition to this, the directional derivative of f along Xf is zero, since

Xf .f / D df .Xf / D �Xf !.Xf / D !.Xf ; Xf / D 0: (41)

This means that if ˆ
f
� is the flow of Xf , then for all values of ��

ˆf�

��
! D !; (42)

and f ı ˆ
f
� D f . That is, neither f nor ! change along the integral curves of the Hamiltonian

vector field associated to f .

Furthermore, since ˆ
f
� WM!M is a diffeomorphism, then it satisfies the conditions for being

a symplectomorphism or canonical transformation. Namely, a diffeomorphism f WM! N
between two symplectic manifolds .M; !/ and .N ; �/ is a symplectomorphism if f �� D !.

What we have now is the following: to any f 2 C1.M/ we can assign a Hamiltonian vector

field Xf 2 X.M/ whose flow ˆ
f
� is a symplectomorphism that preserves f . Now if we work locally

in Darboux coordinates .q�; p�/, so that ! D dq� ^ dp�. If we write Xf locally as

Xf D A
� @

@q�
C B�

@

@p�
; (43)

then we have that
�Xf ! D �Xf

�
dq� ^ dp�

�
D dq�.Xf /dp� � dq�dp�.Xf /

D A�dp� � B�dq� D df:

(44)

However, since

df D
@f

@q�
dq� C

@f

@p�
dp�;

then necessarily the components of Xf must be

A� D
@f

@p�

B� D �
@f

@q�

: (45)

The Hamiltonian vector field associated to f is then, in Darboux coordinates,

Xf D
@f

@p�

@

@q�
�
@f

@q�
@

@p�
D f�; f g : (46)

And once again, if we choose p� D f , then the Hamiltonian vector field is

Xp� D
@

@q�
; (47)

So that the flow of Xp� is simply translation along the q� coordinate. Once again, we can say that
the [Hamiltonian vector field associated to the] canonical momentum is the generator of translations.
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The takeaway

We proved a general result in classical mechanics: to any observable f , we can assign a differential
operator Xf D f�; f g, called the infinitesimal generator or Hamiltonian vector field associated to
f , that generates canonical transformations that preserve f . The one-parameter group of canonical

transformations associated to Xf is given by ˆ
f
� D exp.�Xf /, and we say that f is the generator

of ˆf .
In particular, if we choose the canonical momentum p to be the observable f , then the infinites-

imal generator is Xp D
d
dq and the group of canonical transformations associated to Xp is precisely

the group of translations of the q coordinate. Therefore, we can say that the momentum is the
generator of translations.

Now in quantum mechanics, we simply define the momentum operator Op to be the infinitesimal
generator of the unitary group of translations, and we see that this definition is consistent with
canonical quantization.
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� José, J. V. & Saletan, E. (1998). Classical Dynamics: A Contemporary Approach. This book
is great. I love it. Read it.

� Abraham, R. & Marsden, J. (2008). Foundations of Mechanics.

Great thanks to Laura Arboleda for checking style and consistency.
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