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I see that there is a bit of confusion between mixed and pure states in quantum mechanics. This is because
the measurement of arbitrary obsevables for pure states is probabilistic, and this is easily confused with the
probabilitites associated to a mixed state.

So let’s begin with the probabilistic nature of measurement of observables of pure states.

Pure states

Let H be a Hilbert space (which for our sanity, we will assume finite-dimensional, of dimension N ). Any given
vector j i is a pure state. For example, in the spin-1=2 case, both jCi and j�i are pure states, but also any
complex-linear combination of them is a pure state (since these two vectors span all of H).

Now let A be an observable with associated hermitian operator OA. Suppose that OA has a set of orthonormal
eigenstates fja1i ; : : : ; janig. This means that OA jaki D ak jaki. Assuming that the spectrum does not have
any degeneracies (i.e. repeated eigenvalues), then given any arbitrary state j i, the probability of obtaining
the value ak when measuring the observable A is

P.A D akj / D jhakj ij
2 :

Here we used standard notation from probability, and we explicitly wrote P.A D akj / as a conditional
probability, since this is the probability to measure the value ak of the observable A given the fact that we
know that the system is in state j i. Note that applying this equation to j i D jaj i for some j , we obtain

P.A D akjaj / D
ˇ̌
hakj aj i

ˇ̌2
D ıkj :

This is perfectly consistent with the axioms of quantum mechanics. If we measure the observable A knowing
that the system is in the eigenstate jaj i, then we are absolutely certain that the measurement will return
the value aj . However, if the state is not an eigenstate of OA, then we have uncertainty about what the
measurement will return. This (un)certainty is what the probability P.A D akj / represents.

Then even if we are absolutely certain that the system is in a given state, there is uncertainty
regarding the outcome of (most) experiments.

But what if we are not even certain about what state the system is in? That’s where mixed states come in.

Mixed states

Imagine the following machine: It can emit a particle randomly in one of two different states j 1i; j 2i, each
state j j i with probability pj . After being emitted, the particle travels to a detector which measures the
observable A. After the machine shoots a particle, we are uncertain about what the state of the particle is. It
might be in state j 1i or in state j 2i, the point is that we don’t know. In this case we say that the system is
in a mixed state. Compare this to the case of the previous section, where we were absolutely certain that the
particle was in a specific state (this might be achieved by preparing the system first, e.g. via a measurement).
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Now we ask: After the random machine shoots a particle, what is the probability of measuring the value ak

for the observable A?

We can make use of a bit of probability theory and marginalize. We are absolutely certain that the particle
will be in one of the states j j i, but we don’t know which one. The event “the observed value of A is ak” is
then trivially equivalent to the two events

1. The observed value of A is ak , AND
2. the particle is either in state j 1i or in state j 2i.

Of course, statement 2 is rather trivial. But both statements can be written simultaneously as

.A D ak/ ^ .j i D j 1i _ j i D j 1i/:

We now use the distributive property of conjunction and disjunction .p ^ .q _ r/, .p ^ q/ _ .p ^ r// and
obtain that our statement is equivalent to

.A D ak ^ j i D j 1i/ _ .A D ak ^ j i D j 1i/:

Then the probability that we measure ak is equal to the probability that

1. The observed value of A is ak AND the state is j 1i, OR
2. the observed value of A is ak AND the state is j 2i.

Therefore:

P.A D ak/ D P.A D ak ^ j i D j 1i/C P.A D ak ^ j i D j 2i/:

But now we use the definition of conditional probability: P.A ^ B/ D P.AjB/P.B/, that is, the probability
both A and B occur is the probability that B occurs times the probability that A occurs given the fact that
we know that B occurs. Using this definition, the previous equation becomes (I’m dropping the A D ::: and
j i D ::: parts)

P.A D ak/ D P.akj j 1i/P.j 1i/C P.akj j 2i/P.j 2i/

D p1P.akj j 1i/C p2P.akj j 2i/

D p1jhakj 1ij
2
C p2jhakj 2ij

2

Here we can identify two different sources of uncertainty.The first one is purely quantum-mechanical.
This uncertainty cannot be eliminated, even with perfect information about the state of the system. The
second one is associated with our imperfect knowledge of the system, and it can be reduced with better
information about its state. For example, if we were certain that the system is in state j 1i, then p1 D 1 and
p2 D 0, so that P.A D ak/ D P.A D akj 1/ D jhakj 1ij

2, just as in the case of a pure state.

All the previous discussion is generalized to the case of m different possible states, say j 1i; : : : ; j mi, with
probabilities p1; : : : ; pm. In this case, the probability of observing the value ak when measuring A is

P.A D ak/ D

mX
iD1

pi jhakj i ij
2:

One matrix to rule them all

How do we represent mixed states mathematically? Suppose we have a mixed state with possible outcomes
j 1i; : : : ; j mi, and probabilities p1; : : : ; pm. Recall that (basically) the only things that we actually measure
and care about in quantum mechanics are the expectation values of observables. The expectation value is just
the weighed average of the observable, so
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X
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X
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D

X
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pi j i ih i j

!
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D Tr
�
O� OA
�
:

Here we have assumed that the eigenstates of OA form a complete orthonormal basis, and we have defined the
density matrix O� as

O� WD
X

i

pi j i ih i j:

With this matrix we can calculate the probability of measuring the value ak of the observable A in the mixed
state as

P.A D ak/ D

mX
iD1

pi jhakj i ij
2
D hakj

 
mX

iD1

pi j i ih i j

!
jaki D hakj O�jaki;

which is the k-th diagonal element of the matrix O� when expressed in the basis of eigenstates of OA.

Note that Tr. O�/ D 1, and O� is an hermitian operator (i.e. O�� D O�, where � denotes the conjugate transpose),
therefore it can be diagonalized. Furthemore, since for every vector j˛i we have that

h˛j O�j˛i D
X

i

pi jh˛j i ij
2
� 0;

therefore O� is positive semidefinite, so all of its eigenvalues (let’s call them �1; : : : ; �N ) are non-negative. Some
of them might be zero, some might be repeated, but all are real and non-negative. We have then, that:

Tr. O�/ D �1 C � � � C �N D 1;

so it follows that 0 � �k � 1 for all k D 1; : : : ; N . This, in turn, means that

Tr
�
O�2
�
D �2

1 C � � � C �
2
N � 1:

We have, then, that Tr
�
O�2
�
D 1 if and only if �k D 1 for some k, and all the other �j D 0 for j ¤ k. What

this means is that we are certain that the system is in a particular state j ki, so, as in the first
section, the system is in a pure state. In this case, 1 is an eigenvalue of O�, then it must leave its eigenstate
j i invariant:

O�j i D j i:
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Now O� cannot have any other (nonzero) eigenvalues, so it can be written in the form

O� D j ih j:

This is the general form of the density matrix for a pure state. Recall that, in this case Tr. O�2/ D 1, but for
any other case, the inequality is strict. This means that Tr. O�2/ is, in some sense, a measure of how “pure”
the state is.

What we have just seen is that the density matrix can represent both mixed and pure states, where
pure states are of the form O�pure D j ih j, whereas mixed states are a convex combination of density
matrices of pure states:

O�mixed D

mX
iD1

pi O�i;pure;

with p1 C � � � C pm D 1.

An example

Consider the case of spin-1=2. Suppose that we are in a mixed state of j C zi with probability p and j � zi
with probability 1 � p. The density matrix for this mixed state is

O� D pj C zihCzj C .1 � p/j � zih�zj:

In this z-basis, the matrix takes the rather simple form

O� D

�
p 0

0 1 � p

�
;

so that the square is simply

O�2
D

�
p2 0

0 1 � 2p C p2

�
:

Then we have that
Tr
�
O�2
�
D 2p2

� 2p C 1:

We could say that I. O�/ D 1 � Tr
�
O�2
�
is a measurement of how impure the state is: if this quantity is zero,

then the state is pure. The maximum of I. O�/ occurs when p D 1=2, which is precisely when there is maximum
uncertainty about the state,

O� D
1

2
j C zihCzj C

1

2
j � zih�zj:

The state that this matrix represents is not, I repeat, not the same as the “superposed” state

j C xi D
1
p
2
.j C zi C j � zi/ :

Let’s analyze the similarities and the differences between the two.

The two states seem quite similar at first: They seem to be “equal parts” j C zi and j � zi. Furthermore,
and probably most importantly, the probability distribution of the z-spin observable OSz is the same for both
states. For a refresher, (assuming for god’s sake that ¯ D 1), the j ˙ zi states are precisely the eigenstates of
OSz with eigenvalues ˙1

2
:

OSzj ˙ zi D ˙
1

2
j ˙ zi:

Therefore in our mixed state represented by O�,

P

�
Sz D ˙

1

2

�
mixed

D h˙zj O�j ˙ zi D
1

2
:
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Similarly, for the “superposed state” j C xi, we have:

P

�
Sz D ˙

1

2

ˇ̌̌̌
C x

�
D jh˙zj C xij2 D

1

2
:

This means that if we only were able to measure Sz , then the two states would indeed be indistinguishable.
However, there are other observables that distinguish the half-and-half mixed state represented by O� and
the “superposed” state j C xi. A crystal-clear observable that can distinguish between the two is the x-spin
observable, Sx . On one hand, for the mixed state O�,

P

�
Sx D

1

2

�
mixed

D hCxj O�j C xi D
1

2
:

However, for the superposed state:

P

�
Sx D

1

2

ˇ̌̌̌
C x

�
D jhCxj C xij2 D 1:

Furthermore, if we write the density matrix for the state j C xi, i.e. O�Cx D j C xihCxj, it passes the purity
test with flying colors:

Tr
�
O�2
Cx

�
D 1;

whereas, as we had already seen, for our mixed state Tr. O�2/ D 1=2.

The takeaway

The most important things to take away from all this are the following:

1. There is always uncertainty in the measurement of observables in quantum mechanics, even if you are
absolutely certain that the system is in a specific state. This uncertainty is not a consequence of
systematic or instrumental errors, or lack of information about the system. In this case of absolute
certainty, we say that the system is in a pure state.

2. When we are not sure of what state the system is in, we represent our lack of knowledge by writing
down a probability distribution on the set of probable states. Mathematically, we say that we know
with probability pi that the system is in a state j i i, and say that the system is in a mixed state. In
this case, there is an additional uncertainty in the measurement of observables that comes from our lack
of knowledge of the precise state that the system is in.

3. Both pure and mixed states can be represented mathematically with a density matrix. This matrix
has a lot of neat properties that make calculations of expectation values quite easy, even in the case of
mixed states.
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