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Suppose that you have a k-form ˛ on a manifoldM of dimension n. But you’re a spoiled brat and don’t
like k-forms but rather .n � k/-forms, so you go to your dad and throw a tantrum, and your dad says shhh,
k-forms are okay, see? k-forms and .n � k/-forms are basically the same, you see, �k.M/ and �n�k.M/

even have the same dimension, it’s basically the same thing sweetie stop crying everyone’s staring at us
please, but you won’t have it because all your friends have .n � k/-forms and keep crying, and your dad
already spent a lot of money in your k-form and .n�k/-forms are so expensive! What can your dad do now?
He takes your dumb k-form to his workshop and comes out three hours later with a shiny .n � k/-form, and
hands it to you smiling but he’s regretting having children, nay, having you at this point. Oh wow dad, that’s
perfect thank you so much you’re the best dad, how did yo do it? Well I told you, k-forms and .n� k/-forms
are not that different, you just need a metric and some patience and you can turn one into the other.

1 Metric on the exterior algebra

Let V be a finite-dimensional vector space of dimension n, and g a Lorentzian metric on V , i.e. a symmetric,
non-degenerate bilinear map g W V � V ! R. We can extend g bilinearly to ƒkV for any k as

g.u1 ^ � � � ^ uk; w1 ^ � � � ^ wk/ D det.Œg.ui ; wj /�/;

where u1; : : : ; uk; w1; : : : ; wk 2 V and Œg.ui ; wj /� is a matrix whose .i; j /-th entry is g.ui ; wj /. For
example,

g.u1 ^ u2; w1 ^ w2/ D g.u1; w1/g.u2; w2/ � g.u1; w2/g.u2; w1/:

Now let ˛; ˇ 2 ƒkV . With respect to some basis u1; : : : ; un of V (not necessarily orthonormal), we can
write

˛ D
1

kŠ
˛�1:::�ku

�1 ^ � � � ^ u�k

ˇ D
1

kŠ
ˇ�1:::�ku

�1 ^ � � � ^ u�k ;

and thus we can find (in Einstein’s notation), writing gij D g.ui ; uj / for the components of the metric in
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this basis,

g.˛; ˇ/ D
1

.kŠ/2
˛�1:::�kˇ�1:::�k det.Œg.u

�i ; u�j /�/

D
1

.kŠ/2
˛�1:::�kˇ�1:::�k

X
�2Sk

sgn.�/g�1��.1/ : : : g�k��.k/

D
1

.kŠ/2

X
�2Sk

˛�1:::�kˇ�1:::�k sgn.�/g
�1��.1/ : : : g�k��.k/

D
1

.kŠ/2

X
�2Sk

sgn.�/˛��.1/:::��.k/ˇ�1:::�k

D
1

.kŠ/2

X
�2Sk

˛�1:::�kˇ�1:::�k

D
1

kŠ
˛�1:::�kˇ�1:::�k :

Here we used the fact that the components of a form are totally antisymmetric, so for any permutation � 2 Sk

˛��.1/:::��.k/ D sgn.�/˛�1:::�k :

With this result we can see that g W ƒkV �ƒkV ! R is non-degenerate. Choose an orthonormal basis
e1; : : : ; en of V . Then we have

g.e�1 ^ � � � ^ e�k ; e�1 ^ � � � ^ e�k / D
X
�2Sk

sgn.�/g�1��.1/ : : : g�k��.k/ :

However, since the basis is orthonormal then gi i D ˙1 and gij D 0 if i ¤ j . From this we see that if
f�1; : : : ; �kg ¤ f�1; : : : ; �kg, then for absolutely no permutation � 2 Sk we will have �1 D ��.1/ and : : :
and �k D ��.k/. Thus the inner product is nonzero only if f�1; : : : ; �kg D f�1; : : : ; �kg. In this case, then,
we have that .�1; : : : ; �k/ is precisely a permutation of .�1; : : : ; �k/. Since all symbols �1; : : : ; �k must be
distinct (otherwise e�1 ^ � � � ^ e�k is zero to begin with), we then have that there is only one permutation
that survives in the sum, the one for which precisely ��.i/ D �i . In conclusion:

g.e�1 ^ � � � ^ e�k ; e�1 ^ � � � ^ e�k / D

(
.�1/ssgn.�/ if there exists � such that ��.j / D �j
0 otherwise

;

where here s is the number of elements in fe�1 ; : : : ; e�kg which have negative length. Since we know that
the elements of the form e�1 ^ � � � ^ e�k form a basis for ƒkV , the previous result tells us that in this basis
the matrix of g is diagonal with entries˙1, and thus g is non-degenerate.

2 Defining the Hodge star

Now let vol 2 ƒnV be a volume form on V , given in terms of an oriented orthonormal basis e1; : : : ; en as

vol D e1 ^ � � � ^ en:

We now define the Hodge star operator ? W ƒkV ! ƒn�kV , as the unique linear operator such that for all
˛; ˇ 2 ƒkV ,

˛ ^ ?ˇ D g.˛; ˇ/vol:
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Here we’ve sneakily claimed that such a linear operator exists and is unique. We need to prove that. First,
for each ˇ 2 ƒn�kV define a map �ˇ W ƒkV ! R such that

˛ ^ ˇ D �ˇ .˛/vol:

This map is well-defined and clearly linear, i.e. �ˇ 2 .ƒkV /�. In particular, we can see that in components
with respect to an orthonormal basis e1; : : : ; en of V ,

˛ ^ ˇ D
1

kŠ.n � k/Š
˛�1:::�kˇ�1:::�n�k�

�1:::�k�1:::�n�kvol;

where ��1:::�n is the Levi-Civita symbol, so that

�ˇ .˛/ D
1

kŠ.n � k/Š
˛�1:::�kˇ�1:::�n�k�

�1:::�k�1:::�n�k :

Now let’s see that the assignment, let’s call it � W ƒn�kV ! .ƒkV /�, given as ˇ 7! �ˇ is an isomorphism.
First, it is clearly linear. Now suppose that �ˇ D 0, i.e. for all ˛ 2 ƒkV , �ˇ .˛/ D 0. In particular, for
˛ D e�1 ^ � � � ^ e�k ,

0 D �ˇ .e
�1 ^ � � � ^ e�k / D

1

kŠ.n � k/Š
.e�1 ^ � � � ^ e�k /�1:::�kˇ�1:::�n�k�

�1:::�k�1:::�n�k :

Now we have that the components of the basis itself are

.e�1 ^ � � � ^ e�k /�1:::�k D

(
0 if f�1; : : : ; �kg ¤ f�1; : : : ; �kg
sgn.�/ if � 2 Sk such that �i D ��.i/

:

We denote the right-hand side as the following symbol:

ı�1:::�k�1:::�k
WD

(
0 if f�1; : : : ; �kg ¤ f�1; : : : ; �kg
sgn.�/ if � 2 Sk such that �i D ��.i/

:

A little bit of tedious work shows that
ı�1:::�k�1:::�k

D det.Œı�i�j �/;

i.e. the determinant of the matrix whose .i; j /-th entry is ı�i�j . Now when we plug this back in, we get

0 D �ˇ .e
�1 ^ � � � ^ e�k / D

1

kŠ.n � k/Š
ı�1:::�k�1:::�k

ˇ�1:::�n�k�
�1:::�k�1:::�n�k :

Here we are implicitly summing over all the�i indices. From the definition above, the only terms that survive
in the sum are those for which there exists a permutation � 2 Sk such that �i D ��.i/. Therefore,

�ˇ .e
�1 ^ � � � ^ e�k / D

1

kŠ.n � k/Š

X
�2Sk

ˇ�1:::�n�k sgn.�/�
��.1/:::��.k/�1:::�n�k

D
1

kŠ.n � k/Š

X
�2Sk

ˇ�1:::�n�k�
�1:::�k�1:::�n�k

D
1

.n � k/Š
ˇ�1:::�n�k�

�1:::�k�1:::�n�k

For each set of indices f�1; : : : ; �n�kg if we choose f�1; : : : ; �kg complementary to f�1; : : : ; �n�kg in
f1; : : : ; ng, then we have that ��1:::�k�1:::�n�k D ˙1 and so ˇ�1:::�n�k D 0. Therefore ˇ D 0. The map
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� W ˇ 7! �ˇ is injective, then, and since dim.ƒn�kV / D dim.ƒkV / D dim..ƒkV /�/, we obtain that it is
an isomorphism.

Recall that we have a metric g on ƒkV , which induces an isomorphism g[ W ƒ
kV 7! .ƒkV /�, given as

g[.˛/ WD g.�; ˛/. We define then ? W ƒkV ! ƒn�kV as ?˛ being the unique element in ƒn�kV such that

�?˛ D g[.˛/:

If you want to, you could write ? D ��1 ı g[. At once, this tells us that for any ˛; ˇ 2 ƒkV ,

˛ ^ ?ˇ D �?ˇ .˛/vol D g[.ˇ/.˛/vol D g.˛; ˇ/vol:

Okay so the map exists. What about uniqueness? Suppose there is an isomorphism � W ƒkV ! ƒn�kV

such that ˛ ^ �.ˇ/ D g.˛; ˇ/vol. This tells us that ��.ˇ/.˛/ D g.˛; ˇ/, i.e. that ��.ˇ/ D g[.ˇ/. But then,
by our definition of ?, this precisely means that �.ˇ/ D ?ˇ.

Now a quick example which will help us down the road: We want to compute ?.e�1 ^ � � � ^ e�k /. We
use the fact that ? is an isomorphism, so we can make an educated guess and just check it works. Whatever
it is, it has to satisfy

.e�1 ^ � � � ^ e�k / ^ ?.e�1 ^ � � � ^ e�k / D g.e�1 ^ � � � ^ e�k ; e�1 ^ � � � ^ e�k /vol D .�1/svol;

where s is, again, the number of elements in fe�1 ; : : : ; e�kgwith negative length, or .�1/s D g�1�1 : : : g�k�k .
This means that ?.e�1 ^ � � � ^ e�k / has to consist of the wedges of the basis elements that we don’t have in
e�1 ; : : : ; e�k . That is, let f�1; : : : ; �n�kg be complementary to f�1; : : : ; �kg in f1; : : : ; ng. Therefore,

e�1 ^ � � � ^ e�k ^ e�1 ^ � � � ^ e�n�k D ��1:::�k�1:::�n�kvol:

With this, we then see that

?.e�1 ^ � � � ^ e�k / D .�1/s��1:::�k�1:::�n�k .e�1 ^ � � � ^ e�n�k / (no Einstein sum):

3 Making it useful: formulas in coordinates

This is all nice and all but we want to compute the star of a form explicitly if we have it in terms of some
basis. Can do! Let e1; : : : ; en be an orthonormal basis of V . By definition, we have for any ˛; ˇ 2 ƒkV ,
that

˛ ^ ?ˇ D g.˛; ˇ/vol:

In components with respect to the orthonormal basis, this is

1

kŠ.n � k/Š
˛�1:::�k .?ˇ/�1:::�n�k�

�1:::�k�1:::�n�k D
1

kŠ
˛�1:::�kˇ�1:::�k :

Again, we choose ˛ D e�1 ^ � � � ^ e�k , so that we obtain

1

kŠ.n � k/Š
ı�1:::�k�1:::�k

.?ˇ/�1:::�n�k�
�1:::�k�1:::�n�k D

1

kŠ
g�1�1 : : : g�k�kı

�1:::�k
�1:::�k

ˇ�1:::�k :

On the right-hand side, we have

g�1�1 : : : g�k�kı
�1:::�k
�1:::�k

ˇ�1:::�k D ı
�1:::�k
�1:::�k

ˇ�1:::�k :

But now recall that ı�1:::�k
�1:::�k

is non-zero only when there is a permutation � such that �i D ��.i/. Then we
have

ı
�1:::�k
�1:::�k

ˇ�1:::�k D
X
�2Sk

ı�1:::�k��.1/:::��.k/
ˇ��.1/:::��.k/ D

X
�2Sk

sgn.�/ˇ��.1/:::��.k/ D
X
�2Sk

sgn.�/2ˇ�1:::�k D kŠˇ�1:::�k :

4



On the left-hand side, we have something similar:

ı�1:::�k�1:::�k
��1:::�k�1:::�n�k D kŠ��1:::�k�1:::�n�k :

When we put it all together, we get

1

.n � k/Š
.?ˇ/�1:::�n�k�

�1:::�k�1:::�n�k D ˇ�1:::�k :

We are nearly done! We only need to get rid of that Levi-Civita symbol on the left-hand side. To do so,
consider the sum1

��1:::�k�1:::�n�k��1:::�k�1:::�n�k :

The only terms of the sum that are non-zero are when f�1; : : : ; �kg is complementary to both the sets
f�1; : : : ; �n�kg and f�1; : : : ; �n�kg in f1; : : : ; ng. This implies that the sum is non-zero only if f�1; : : : ; �n�kg D
f�1; : : : ; �n�kg. Then suppose that there is some � 2 Sn�k such that �i D ��.i/. Without the Einstein
convention, this becomes:X

�1;:::;�k

��1:::�k�1:::�n�k��1:::�k��.1/:::��.n�k/ D
X

�1;:::;�k

sgn.�/��1:::�k�1:::�n�k��1:::�k�1:::�n�k

D

X
�1;:::;�k

sgn.�/.��1:::�k�1:::�n�k /2

D

X
�1;:::;�k

sgn.�/.��1:::�k�1:::�n�k /2

D kŠsgn.�/:

In conclusion, we have that

��1:::�k�1:::�n�k��1:::�k�1:::�n�k D kŠı
�1:::�n�k
�1:::�n�k

:

With this, finally we obtain

1

.n � k/Š
.?ˇ/�1:::�n�k�

�1:::�k�1:::�n�k��1:::�k�1:::�n�k D
kŠ

.n � k/Š
.?ˇ/�1:::�n�kı

�1:::�n�k
�1:::�n�k

D kŠ.?ˇ/�1:::�n�k :

Now we put it all together:
kŠ.?ˇ/�1:::�n�k D ˇ

�1:::�k��1:::�k�1:::�n�k ;

i.e.
.?ˇ/�1:::�n�k D

1

kŠ
ˇ�1:::�k��1:::�k�1:::�n�k :

And we’re done! Right? We’re done, right? ... guys? What’s wrong?
...
What do you mean you want it for a general basis?
Okay let u1; : : : ; un be some basis, and let A be the change-of-basis matrix from the e to the u basis,

such that
ui D Aij e

j :

1Here, the Levi-Civita symbol with lowered indices is not lowered with the metric, i.e. we consider (but only for the Levi-Civita
symbol!)

��1:::�k D ��1:::�k :

This means that we are not allowed to raise or lower the indices of � with the metric. It is just a convenient symbol for adding things
that does not represent the components of a tensor!
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In this new basis, the volume form is not u1 ^ � � � ^ un, but these two are non-zero top-forms so they’re only
scalar multiples of one another. Explicitly,

u1 ^ � � � ^ un D A1�1 : : : A
n
�n
e�1 ^ � � � ^ e�n D A1�1 : : : A

n
�n
��1:::�ne1 ^ � � � ^ en D det.A/vol:

What is det.A/? Fortunately we can calculate it easily: Let gu be the matrix representation of g on the
u-basis, namely

Œgu�
��
D g.u�; u�/:

Then
Œgu�

��
D g.u�; u�/ D A��A

�
�g.e

�; e�/ D A��Œge�
��A�� D ŒA � ge � A

T ��� ;

where ge is the matrix representation of g with respect to the orthonormal basis, i.e. ge is diagonal with˙1
on the diagonal. Taking the determinant we get

det.gu/ D det.A/2 det.ge/ D .�1/s det.A/2;

with s being the number of negative eigenvalues of ge (also known as the signature of the metric). Thus,

det.A/ D ˙
p
j det.gu/j;

where the sign depends on the orientation of the u basis. Thus,

u1 ^ � � � ^ un D ˙
p
j det.gu/jvol:

With this we can find the expression for ? with respect to any choice of basis. In the u basis, we have

˛ ^ ?ˇ D
1

kŠ.n � k/Š
˛�1:::�k .?ˇ/�1:::�n�k�

�1:::�k�1:::�n�ku1 ^ � � � ^ un

D
˙
p
j detguj

kŠ.n � k/Š
˛�1:::�k .?ˇ/�1:::�n�k�

�1:::�k�1:::�n�kvol:

And thus we can repeat the same process as we did above, just that we need to carry the˙
p
j det.gu/j on the

left-hand side for the whole ride. In the end, we get

.?ˇ/�1:::�n�k D ˙
1

kŠ

1p
j det.gu/j

ˇ�1:::�k��1:::�k�1:::�n�k :

Alright before you say anything, yes, I know that this is not the same equation that you’ll see basically
everywhere else; the determinant of the metric should in the numerator, you say? Yes, but actually no. See,
here we worked with the exterior algebra of a vector space V , not its dual. In practice, with differential
forms, we’re working with the exterior algebra of differential forms, which are dual to the tangent spaces.
That changes the formula a little bit since the matrix of the metric on the dual is the inverse of the matrix in
the tangent space.

4 On differential forms

Before jumping head-first to differential forms, let’s see what happens when we try to apply all this on the
dual. If we have a metric g on V , it induces isomorphisms g[ W V ! V � and g] D .g[/�1 W V � ! V , given
as

g[.v/.u/ D g.v; u/

for all u; v 2 V , and similarly, for all ˛ 2 V �, we have that g].˛/ 2 V is such that

g.g].˛/; u/ D ˛.u/
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for all u 2 V . If we take a basis (INDEX SWITCH ALERT) u1; : : : ; uk 2 V , and write v D v�u�, then
what are the components of g[.v/? If u1; : : : ; uk is the dual basis of V �, then we can write

g[.v/ D .g[.v//�u
�;

where
g[.v/� D g[.v/.u�/ D g.v; u�/ D v

�g.u� ; u�/ WD v
�g��:

Here we write g�� D g.u�; u�/ as the components of the metric in this basis. We call this lowering the
index of v, and we simply abuse notation by writing g[.v/ D v�u�, with v� WD v�g��.

Similarly, if ˛ D ˛�u� 2 V �, then we have that

˛� D ˛.e�/ D g.g
].˛/; e�/ D .g

].˛//�g.u�; u�/ D .g
].˛//�g�� :

Thus we can invert this matrix equation and write

.g].˛//� WD .g�1/��˛� ;

where .g�1/�� are the components2 of the inverse of the matrix of g.
So far so good. Now we can simply pull back the metric g from V to V � using g], and define (using the

same symbol), for any ˛; ˇ 2 V �,
g.˛; ˇ/ D g.g].˛/; g].ˇ//:

What are the components of the dual metric with respect to the u1; : : : ; un basis? Well we compute

g�� D g.e�; e�/ D g.g].e�/; g].e�// D .g�1/˛ˇ .g�1/��g..e�/ˇe˛; .e
�/�e�/

D .g�1/˛�.g�1/��g.e˛; e�/

D .g�1/˛�.g�1/��g˛�

D .g�1/�� :

Thus the components of the metric on V � are the components of the inverse of the metric on V . We drop the
clunky �1 from now on since there is no ambiguity: g�� always means the components of the inverse of the
matrix with entries g�� .

Now we’re done! Let M be a smooth manifold with a Lorentzian metric g. We will apply all this,
pointwise, to the cotangent spaces of M . By definition, g is a smooth tensor field on M which is point-
wise a metric gx W TxM � TxM ! R. This metric induces a metric gdual on T �xM via the isomorphism
.gx/

] W T �xM ! TxM as above. Now we define the Hodge-dual pointwise but on the cotangent space, so
the metric we use is the inverse of the metric on TM . That is, in the notation of section 2 we let V D T �xM ,
so that the Hodge star is ? W �kx.M/! �n�kx .M/, but in this case the components are

.?ˇ/�1:::�n�k D ˙
1

kŠ

1p
j det.gdualu /j

ˇ�1:::�k��1:::�k�1:::�n�k D ˙

p
j det.gu/j
kŠ

ˇ�1:::�k��1:::�k�1:::�n�k :

If you look at this expression, it is obviously smooth since the components of g and ˇ are and det.gu/ is
non-zero. Thus we can happily extend ? to be a global operator

? W �k.M/! �n�k.M/:

2yes... I know that we don’t carry around the �1. Just gimme a minute okay?
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5 A neat example: de Rham vs. curl, grad, div

Now let’s make it explicit. We considerM D R3, with its natural euclidean metric g, and coordinates x; y; z.
The volume form is simply

vol D dx ^ dy ^ dz:

Now let’s see what ? does to 0, 1, 2, and 3-forms. First, recall that if e1; : : : ; en is an orthonormal basis, then

?.e�1 ^ � � � ^ e�k / D .�1/s��1:::�k�1:::�n�k .e�1 ^ � � � ^ e�n�k / (no Einstein sum);

where s is the number of elements in fe�1 ; : : : ; e�kg with negative length, and f�1; : : : ; �n�kg is comple-
mentary to f�1; : : : ; �kg in f1; : : : ; ng. Now a 0-form is just a smooth function, say f , and we simply
have

?f D f vol D f .x; y; z/dx ^ dy ^ dz:

Now for one-forms, the above result tells us that

?.dx/ D dy ^ dz
?.dy/ D dz ^ dx
?.dz/ D dx ^ dy;

so that
?.!xdx C !ydy C !zdz/ D !xdy ^ dz C !ydz ^ dx C !zdx ^ dy:

Similarly, for 2-forms we have

?.!yzdy ^ dz C !zxdz ^ dx C !xydx ^ dy/ D !yzdx C !zxdy C !xydz:

For 3-forms,
?.f vol/ D f:

Now let’s talk about grad, curl, and div. Just as a reminder and for the sake of completeness, let’s write
them down. Let U �M be an open set. Then we define grad W C1.U /! X.U / as

grad.f / D
@f

@x

@

@x
C
@f

@y

@

@y
C
@f

@z

@

@z
D g].df /:

We define curl W X.U /! X.U /, defined as

curl
�
f x

@

@x
C f y

@

@y
C f z

@

@z

�
D

�
@f z

@y
�
@f y

@z

�
@

@x
C

�
@f x

@z
�
@f z

@x

�
@

@y
C

�
@f y

@x
�
@f y

@x

�
@

@z
;

and finally, div W X.U /! C1.U / given as

div
�
f x

@

@x
C f y

@

@y
C f z

@

@z

�
D
@f x

@x
C
@f y

@y
C
@f z

@z
:

It is an elementary exercise to prove that curl ı grad D 0 and div ı curl D 0, so that we have a complex

0! C1.U /
grad
! X.U /

curl
! X.U /

div
! C1.U /! 0;

called the gcd complex.
Now let’s compare this to the de Rham differential, explicitly to be more clear: for a 0-form,

df D
@f

@x
dx C

@f

@y
dy C

@f

@z
dz:
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For a 1-form,

d.!xdxC!ydyC!zdz/ D
�
@!z

@y
�
@!y

@z

�
dy^dzC

�
@!x

@z
�
@!z

@x

�
dz^dxC

�
@!y

@x
�
@!x

@y

�
dx^dy:

And for a 2-form,

d.!yzdy ^ dz C !zxdz ^ dx C !xydx ^ dy/ D
�
@!yz

@x
C
@!zx

@y
C
@!xy

@z

�
dx ^ dy ^ dz:

This tells us that there is an isomorphism between the gcd complex and the de Rham complex, given as
�0 W C

1.U /! C1.U / being simply �0 D id. We also have �1 W X.U /! �1.U / as

�1

�
f x

@

@x
C f y

@

@y
C f z

@

@z

�
D f xdx C f ydy C f zdz;

i.e. �1 D g[. We also have �2 W X.U /! �2.U / given as

�2

�
f x

@

@x
C f y

@

@y
C f z

@

@z

�
D f xdy ^ dz C f ydz ^ dx C f zdx ^ dy;

which we can identify as �2 D ? ı g[. Finally, we have �3 W C1.U /! �3.U / given as

�3.f / D f dx ^ dy ^ dz D ?.f /:

By construction, we have �0 D idC1.U /, �1 D g[, �2 D ? ı g[ and �3 D ?, all of which are isomorphisms.
Now we need to check that the diagram

0 C1.U / X.U / X.U / C1.U / 0

0 �0.U / �1.U / �2.U / �3.U / 0

grad

�0

curl

�1

div

�2 �3

d d d d

commutes... but this is a straightforward, albeit a bit boring, computation. Therefore we have that �� is an
isomorphism of complexes, which induces an isomorphism in cohomology:

ker.grad/ Š H 0.U /

ker.curl/=im.grad/ Š H 1.U /

ker.div/=im.curl/ Š H 2.U /

C1.U /=im.div/ Š H 3.U /:

So suppose you have a vector field E 2 X.U / satisfying curl.E/ D 0. When can you guarantee that
E D grad.'/ for some scalar function ' 2 C1.U /? The previous result tells us that whenH 1.U / D 0, i.e.
when U is simply connected, then every irrotational field is a gradient. Similarly, if you have a field B such
that div.B/ D 0, then ifH 2.U / D 0, we can guarantee that B D curl.A/ for some field A 2 X.U /.

6 Another neat example: wedge and cross product

Have you noticed that the cross product in R3 behaves very similarly to the wedge product? With the
antisymmetry and all. There is, of course, a huge difference between both: the cross product returns another
vector in R3, i.e. � W R3 � R3 ! R3, whereas the wedge product returns an element of the exterior product
of R3 with itself, ^ W R3 � R3 ! R3 ^ R3. How can we bridge both?
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On R3 we have the canonical euclidean metric g, and thus we have the Hodge star ? W R3 ^ R3 ! R3.
With this we can construct an antisymmetric map ? ı ^ W R3 � R3 ! R3.

Let e1; e2; e3 be the canonical orthonormal basis of R3. We then see that

?.e1 ^ e2/ D e3

?.e2 ^ e3/ D e1

?.e3 ^ e1/ D e2:

However, this is the same as

e1 � e2 D e3

e2 � e3 D e1

e3 � e1 D e2:

We then happily conclude that
u � v D ?.u ^ v/

for all u; v 2 R3.

7 The takeaway

The Hodge star operator makes an explicit isomorphism between the exterior powers ƒkV and ƒn�kV of
a vector space with the aid of a metric. With it we can bridge the similarities between exterior products of
complementary degrees. It also makes explicit the relationship between the cross product and vector calculus
in R3 and the calculus and algebra of differential forms on it. As a quick corollary, we saw that the existence
of potentials for certain functions depends on the topology of the underlying space (which in most cases in
physics is trivial).

With the Hodge star we will be able to neatly writeMaxwell’s equations, andmore importantly, generalize
them for a large class of physical fields: gauge fields.
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