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Quantization is the process that transforms a classical physical system into its quantum counterpart. As
done by most physicists, quantization is quite ad hoc and not very rigorous. There’s a well-defined mathemat-
ical structure of classical mechanics (which is generalized into symplectic geometry), and there’s a well-defined
structure of non-relativistic quantum mechanics (that of Hermitian operators on a Hilbert space); however,
how one takes a classical object (be it state or observable) into its quantum counterpart is often not very clear.

In this post, we start a dive into one of the few ways mathematicians have tried to make quantization rigor-
ous: geometric quantization. Its name comes from the fact that the quantization method arises somewhat
naturally from the symplectic structure of phase space.

Before we look at geometric quantization, let’s look at quantization of classical phase space, as done by
physicists. That way we can see what we want from a theory of quantization.

Consider the phase space of a particle, for simplicity in one spatial dimension. It has a position coordinate
𝑞 and a momentum coordinate 𝑝, and their Poisson bracket1 is

{𝑞, 𝑝} = 𝜕𝑞
𝜕𝑞

𝜕𝑝
𝜕𝑝 − 𝜕𝑝

𝜕𝑞
𝜕𝑞
𝜕𝑝 = 1.

Canonical quantization (or Heisenberg quantization) consists of turning 𝑞 and𝑝 into Hermitian operators
̂𝑞, ̂𝑝 on a Hilbert spaceℋ, which satisfy the canonical commutation relations

[ ̂𝑞, ̂𝑝] = 𝑖ℏ.

So in brief, in physics we quantize by putting little hats on top of observables, declaring that they are Hermi-
tian operators now, and imposing the canonical commutation relations.

1Recall that the Poisson bracket between two functions𝑓(𝑞, 𝑝) and 𝑔(𝑞, 𝑝) is given by

{𝑓, 𝑔} = 𝜕𝑓
𝜕𝑞

𝜕𝑔
𝜕𝑝 − 𝜕𝑔

𝜕𝑞
𝜕𝑓
𝜕𝑝 .
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More generally, we want to promote all functions𝑓(𝑞, 𝑝) on phase space to Hermitian operators on some
Hilbert space ℋ, in a way that respects the Poisson bracket. That is, for two functions 𝑓, 𝑔, we want their
quantizations ̂𝑓, ̂𝑔 to satisfy

{𝑓, 𝑔} ↦ −𝑖
ℏ [

̂𝑓, ̂𝑔].

How do we obtain the quantization of such a function? Well, starting from the quantization of 𝑞 and 𝑝, we
can quantize “all” functions that depend on only one of the variables 𝑞 or 𝑝, by “quantizing” each term of
their Taylor expansion. For example, if we have a function 𝑓(𝑞), then its quantization is

𝑓(𝑞) =
∞
∑
𝑛=0

𝑎𝑛𝑞𝑛 ↦ ̂𝑓 =
∞
∑
𝑛=0

𝑎𝑛 ̂𝑞𝑛.

In practice, quantizing all functions of only 𝑝 and only 𝑞 gets us quite far, since we are mostly interested in
the Hamiltonian function, which is very often of the form

𝐻(𝑞, 𝑝) = 𝑝2
2𝑚 + 𝑉(𝑞),

where𝑉 is a potential function that only depends on position. But what if the function we want to quantize
depends both on 𝑞 and 𝑝 in a nontrivial way? Well... things get hairy then and there’s several, often non-
equivalent, ways to deal with that.

Another question we have right now is... what is the Hilbert space ℋ? Here is where we connect with
Schrödinger’s wave mechanics. The Hilbert space is 𝐿2(ℝ), the space of square-integrable functions on the
real line, and the operators ̂𝑞, ̂𝑝 have an explicit representation:

( ̂𝑞𝜓)(𝑥) = 𝑥𝜓(𝑥)

( ̂𝑝𝜓)(𝑥) = −𝑖ℏd𝜓
d𝑥 .

Following all these prescriptions, we have, for example, that the Hamiltonian of a free particle gets quantized
as

�̂� = − ℏ2
2𝑚

d2

d𝑥2 .

And the Hamiltonian of the harmonic oscillator with elastic constant 𝑘 gets quantized as

�̂� = − ℏ2
2𝑚

d2

d𝑥2 +
1
2𝑘𝑥

2,

where the second term is understood as multiplying by 𝑥2.

1 Our wildest quantum dreams

Looking back on the previous section, we can try to fit all these into some axioms of quantization. What do
we want from a quantization scheme?

We want a procedure that takes functions on phase space, and turns them into Hermitian operators on a
Hilbert space. If we consider the phase space in𝑛 dimensions, what we want then is amap𝐶∞(ℝ𝑛×ℝ𝑛) →
Herm(ℋ), which we denote as 𝑓 ↦ ̂𝑓. The first obvious condition is that it should turn Poisson brackets
into commutation relations (times 𝑖ℏ). We can express this as:

Axiom 1: For any pair of functions 𝑓, 𝑔 ∈ 𝐶∞(ℝ𝑛×ℝ𝑛), we have the canonical commutation relations

[ ̂𝑓, ̂𝑔] = 𝑖ℏ{̂𝑓, 𝑔}.
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This axiom is not enough to give us the canonical commutation relations of 𝑝 and 𝑞: we need to ensure that
the quantization of the constant function 1 is precisely the identity 𝐼. We introduce this as a second axiom:

Axiom 2: The quantization of the constant function 1 is the identity 𝐼:

1̂ = 𝐼.

Another axiom that is well needed is that the quantization scheme should be linear. This is an implicit
assumption when we do canonical quantization!

Axiom 3: The quantization scheme is linear.
The next axiom is the one that tells us that we can quantize functions by quantizing their Taylor expan-

sions in a term by term basis. In most cases, we don’t even need to go that far: we just want the quantization
scheme to respect the polynomial algebra generated by functions! That is:

Axiom 4: For any function 𝑓 and all 𝑛 ∈ ℤ:

(̂𝑓𝑛) = (𝑓)𝑛.

The last axiom, doesn’t show up explicitly in canonical quantization, but it implies that the quantization
of the functions 𝑝 and 𝑞 are the standard ones on 𝐿2(ℝ). This is a condition imposing the irreducibility of
the representation of the algebra of functions on the Hilbert space:

Axiom 5: The only subspaces 𝑊 ⊆ ℋ that are stable under the action of all the quantizations of the
position and momentum functions are 0 and ℋ. That is to stay: if ̂𝑞(𝑊) ⊆ 𝑊 and ̂𝑝(𝑊) ⊆ 𝑊 , then
𝑊 = 0 or𝑊 = ℋ.

By the Stone-Von Neumann theorem, this, along with the canonical commutation relations of ̂𝑞 and ̂𝑝,
implies their standard representations in 𝐿2(ℝ).

2 Our dreams shattered

Welp, it turns out that the axioms above are too much to ask of a quantization scheme. As an example, let’s
consider the function 𝑝𝑞. Remember that we don’t know how to quantize products of 𝑝 and 𝑞, but if we
rewrite it as

𝑝𝑞 = 1
2((𝑝 + 𝑞)2 − 𝑝2 − 𝑞2),

we know how to quantize all the terms on the right-hand side, using axioms 2 and 4:

𝑝𝑞 = 1
2(( ̂𝑝 + ̂𝑞)2 − ̂𝑝2 − ̂𝑞2) = 1

2( ̂𝑝 ̂𝑞 + ̂𝑞 ̂𝑝).

So far, so good. In a similar fashion, we get

𝑝2𝑞2 = 1
2( ̂𝑝2 ̂𝑞2 + ̂𝑞2 ̂𝑝2).

But here we run into trouble. From axiom 4, we should have

𝑝2𝑞2 = (̂𝑝𝑞)2 = 𝑝𝑞2,

but
𝑝𝑞2 ≠ 1

2( ̂𝑝2 ̂𝑞2 + ̂𝑞2 ̂𝑝2).

So the scheme is inconsistent! And it turns out (see Ali & Engliš) that many more inconsistencies between
these axioms.

So... why isn’t this a big problem in physics? It’s because wedon’t care about the whole Poisson algebra of
𝐶∞(ℝ𝑛×ℝ𝑛)! In practice, we only care about quantizing certain specific functions on phase space: energies,
momenta, etc. These have explicit expressions which are often polynomials of low degree in𝑝 and 𝑞, without
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any cross-terms like 𝑝𝑞, which are the ones that bring trouble. Even more, if we have cross-terms as in the
angular momentum

L = q × p = (𝑞𝑦𝑝𝑧 − 𝑞𝑧𝑝𝑦)e𝑥 + (𝑞𝑧𝑝𝑥 − 𝑞𝑥𝑝𝑧)e𝑦 + (𝑞𝑥𝑝𝑦 − 𝑞𝑦𝑝𝑥)e𝑧,

the factors 𝑞𝑖𝑝𝑗 are actually commuting, since the canonical Poisson algebra is

{𝑞𝑖, 𝑝𝑗} = 𝛿𝑖𝑗 .

So in the end there is no trouble.

3 What is our objective, then?

We know that it’s impossible to find a quantization scheme satisfying all the axioms, so what is our goal? At
the outset, we need to relax some conditions.

First, we will not try to quantize the entire Poisson algebra of smooth functions on phase space. Instead,
we will focus on a (possibly very small) subalgebra of quantizable observables, which we call Obs ⊂ 𝐶∞(ℝ𝑛×
ℝ𝑛). Furthermore, we will not require Axioms 4 and 5 anymore, which seem to be the most restrictive.

And even better, we don’t have to focus on the standard phase spaceℝ𝑛 ×ℝ𝑛, but instead we can try to
find a quantization scheme for any symplectic manifold.

4 The geometric viewpoint of canonical quantization

Let’s put our geometer hats on and go back to the canonical quantization of 𝑀 = ℝ𝑛 × ℝ𝑛. We’ll do some
half guessing, half reverse-engineering to try to find:

1. A subalgebra of quantizable observables Obs,

2. a Hilbert space of quantum statesℋ,

3. and a quantization scheme Obs → Herm(ℋ) satisfying axioms 1, 2, and 3,

which hopefully coincides with the standard canonical quantization. Along the way, we’ll also be thinking
about how to write these ideas in a coordinate-free way, so that we can generalize to symplectic manifolds.

Our guiding light is the first axiom: For any pair of functions 𝑓, 𝑔 in our (still undetermined) space of
observable functions, we want their quantizations to satisfy the commutation relations

[𝑓, ̂𝑔] = 𝑖ℏ{̂𝑓, 𝑔}.

Even more, we expect the quantized operators to act somewhat like differential operators on a space of func-
tions (wavefunctions). This rings a symplectic bell! Recall that any smooth function on a symplectic mani-
fold (𝑀, 𝜔) has an associated Hamiltonian vector field 𝑋𝑓 defined as

𝜄𝑋𝑓𝜔 = d𝑓.

These vector fields are indeed operators acting on functions, and furthermore, they satisfy

𝑋{𝑓,𝑔} = −[𝑋𝑓, 𝑋𝑔],

Where {𝑓, 𝑔} = 𝑋𝑔[𝑓] is the standard Poisson structure induced by the symplectic structure. This tells us
that a naïve, but good, start for a quantization rule is

̂𝑓 = −𝑖ℏ𝑋𝑓,
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since then we have

[ ̂𝑓, ̂𝑔] = −ℏ2[𝑋𝑓, 𝑋𝑔] = ℏ2𝑋{𝑓,𝑔} = 𝑖ℏ(−𝑖ℏ𝑋{𝑓,𝑔}) = 𝑖ℏ{̂𝑓, 𝑔}.

So axiom 1 is satisfied, but not axiom 2, since the Hamiltonian vector field associated to a constant function
is just 0, so we need to tweak the quantization scheme. The first dumb guess is to add a multiplication by the
original function, i.e.

̂𝑓 ?= −𝑖ℏ𝑋𝑓 + 𝑓,
so we fix the problem that the quantization of 1 is not id. However, as we see in the gory details below, we
break the commutation rules:

[𝑓, ̂𝑔] = 𝑖ℏ ({̂𝑓, 𝑔} + {𝑓, 𝑔})
One way to fix this is by choosing a symplectic potential 𝜃 for the symplectic form 𝜔; i.e. a form that satisfies
−d𝜃 = 𝜔, and defining the quantization of an observable as

̂𝑓 = −𝑖ℏ𝑋𝑓 + 𝑓 − 𝜃(𝑋𝑓).

This tweaking goes back to Segal, 1960, but it is left unmotivated. It is very likely that it was obtained by
educated guessing and trial-and-error. We show that it is a good quantization scheme in the gory details
below.

How does this look like inℝ𝑛 × ℝ𝑛? If we choose global coordinates 𝑞𝜇, 𝑝𝜇, the symplectic form is

𝜔 = d𝑞𝜇 ∧ d𝑝𝜇,

and the Hamiltonian vector field associated to a function 𝑓 ∈ 𝐶∞(ℝ𝑛 × ℝ𝑛) is

𝑋𝑓 =
𝜕𝑓
𝜕𝑝𝜇

𝜕
𝜕𝑞𝜇 −

𝜕𝑓
𝜕𝑞𝜇

𝜕
𝜕𝑝𝜇

,

so that the Poisson bracket of two functions is

{𝑓, 𝑔} = 𝜕𝑓
𝜕𝑞𝜇

𝜕𝑔
𝜕𝑝𝜇

− 𝜕𝑓
𝜕𝑝𝜇

𝜕𝑔
𝜕𝑞𝜇 .

A symplectic potential is given by the tautological form, which is defined in these coordinates as2

𝜃 = 𝑝𝜇d𝑞𝜇.

It is straightforward to show that this quantization scheme is explicitly

̂𝑓 = −𝑖ℏ ( 𝜕𝑓𝜕𝑝𝜇
𝜕
𝜕𝑞𝜇 −

𝜕𝑓
𝜕𝑞𝜇

𝜕
𝜕𝑝𝜇

) + 𝑓 − 𝑝𝜇
𝜕𝑓
𝜕𝑝𝜇

.

Alright! So we’re done! Let’s see what happens to the coordinate functions. For the momenta 𝑝𝜇, we
have

̂𝑝𝜇 = −𝑖ℏ 𝜕
𝜕𝑞𝜇 .

Perfect! And for the positions 𝑞𝜇:

̂𝑞𝜇 = 𝑖ℏ 𝜕
𝜕𝑝𝜇

+ 𝑞𝜇.

Ah fuck. It’s okay, we can fix it. In fact, there is nothing wrong here! You see, these are operators that have to
act on some vector space. In canonical quantization, this is the space of complex-valued, square-integrable
wavefunctions 𝐿2(ℝ𝑛), which consists of functions only of the 𝑞 variables! So the leftover term in ̂𝑞𝜇 is
actually zero, since the wavefunctions do not depend on 𝑝.

So our first attempt at a rigorous canonical quantization is the following:
2This tautological form is somewhat canonical in ℝ𝑛 ×ℝ𝑛. In fact, it is a canonical one-form on any cotangent bundle 𝑇∗𝑄,

which gives a canonical symplectic structure to any cotangent bundle.
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1. The symplectic manifold isℝ𝑛 × ℝ𝑛, with the standard symplectic structure.

2. The quantum state space is 𝐿2(ℝ𝑛), defined in the 𝑞 variables only.

3. The quantization of an observable 𝑓 ∈ ℂ∞(ℝ𝑛 × ℝ𝑛) is given by

̂𝑓 = −𝑖ℏ𝑋𝑓 + 𝑓 − 𝜃(𝑋𝑓),

where 𝜃 is the tautological form.

Of course, there are a few problems there if we try to go to general symplectic manifolds. First of all, there
might not be a global choice of a symplectic potential, so the quantization of an observable might change as
we move around the manifold. In fact, even locally the choice of a potential is not unique. No bueno.
Furthermore, in a general manifold there isn’t a canonical separation of position and momenta: we just have
an even amount of coordinates. So how do we make a coordinate-free definition of a function depending
“only on the 𝑞 coordinates”?

Let’s tackle the first problem.

5 Gauge symmetries

The quantization of observables requires a choice of a symplectic potential. In the case of canonical quan-
tization, there is a canonical choice given by the tautological form.3 But in the general case of symplectic
manifolds,4 symplectic potentials exist at best locally, and the choice is far from unique. Can we get a quan-
tization of observables that is independent from the choice of symplectic potential?

Suppose that we have two symplectic potentials 𝜃 and 𝜃′, defined locally on some open sets 𝑈 and 𝑈 ′,
such that on the intersection𝑈 ∩ 𝑈 ′ we have

𝜃′ = 𝜃 + d𝑢.

This, of course, changes the quantization of an observable:

̂𝑓′ = −𝑖ℏ𝑋𝑓 + 𝑓 − 𝜃′(𝑋𝑓) = ̂𝑓 − d𝑢(𝑋𝑓).

Consequently, the action of ̂𝑓′ on a wavefunction𝜓will differ from that of ̂𝑓. But all is not lost! In quantum
mechanics, we don’t really care about wavefunctions, but instead the expectation values of observables:

⟨𝜓||�̂�𝜓⟩ .

That means that if we change the observables and the wavefunctions such that the expectation values are
preserved, then all is well!

I’ve discussed this idea previously in another post, but the gist is the following. If we change the wave-
function as

𝜓′ = 𝑒
𝑖
ℏ𝑢𝜓,

then it is straightforward to check that the action of ̂𝑓′ on 𝜓′ satisfies

̂𝑓′𝜓′ = ( ̂𝑓𝜓)′.

That is, if we transform the operator and apply it to the transformed wavefunction, we get the same thing
as applying the original operator to the original wavefunction and then transforming. Furthermore, we see
that the operators change as

̂𝑓′ = 𝑒
𝑖
ℏ𝑢 ̂𝑓𝑒−

𝑖
ℏ𝑢,

3This also holds more generally when the symplectic manifold in question is the contangent bundle of some configuration
manifold.

4Why would we even care about symplectic manifolds that are not cotangent bundles? Physically, I mean.
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and so the expectation values are preserved exactly:

⟨𝜓′|| ̂𝑓′𝜓′⟩ = ⟨𝜓|| ̂𝑓𝜓⟩ .

This suggests that we should think of the wavefunction as a section of a line bundle 𝐿 that has transition

functions 𝑒−
𝑖
ℏ , and that the operators act on this space of sections. Furthermore, if we write the action of ̂𝑓

as
̂𝑓𝜓 = −𝑖ℏ (d𝜓 − 𝑖

ℏ𝜃 ⋅ 𝜓) (𝑋𝑓) + 𝑓,

we see that the term in brackets is precisely the local expression of a connection (or covariant derivative) on
𝐿:

∇ = d − 𝑖
ℏ𝜃,

whose curvature is precisely

𝑅∇ = − 𝑖
ℏd𝜃 = 𝑖

ℏ𝜔.

We call the bundle 𝐿 the prequantum line bundle, and from its curvature we can see that its Chern class is

𝑐1(𝐿) =
1

2𝜋ℏ[𝜔].

With this in mind, we can think of the state space as the set of sections of the prequantum line bundle,
and the quantization of a function 𝑓 ∈ 𝐶∞(𝑀) is

̂𝑓𝜓 = −𝑖ℏ∇𝑋𝑓𝜓 + 𝑓𝜓.

6 The first obstruction

It turns out that having a line bundle 𝐿with a connection whose curvature is 𝑖
ℏ
𝜔 imposes a restriction on the

symplectic form. Namely, we require 1
2𝜋ℏ

[𝜔] to be an integral cohomology class.
Let’s see this briefly. Consider a cover {𝑈𝑗} of 𝑀, where each 𝑈𝑗 is contractible and such that on each

𝑈𝑗 we have symplectic potentials 𝜃𝑗 . Then on intersections, we can define the transition functions 𝑢𝑖𝑗 ∶
𝑈 𝑖 ∩ 𝑈𝑗 → ℂ satisfying

d𝑢𝑖𝑗 = 𝜃𝑖 − 𝜃𝑗 .

As we saw above, the transition functions of the prequantum line bundle 𝐿 are of the form exp( 𝑖
ℏ
𝑢𝑖𝑗), and

so they must satisfy the cocycle conditions

exp( 𝑖ℏ(𝑢𝑖𝑗 + 𝑢𝑗𝑘 + 𝑢𝑘𝑖)) = 1,

which means that the functions 𝑧𝑖𝑗𝑘 ∶ 𝑈 𝑖 ∩ 𝑈𝑗 ∩ 𝑈𝑘 → ℂ defined as

𝑧𝑖𝑗𝑘 =
1

2𝜋ℏ(𝑢𝑖𝑗 + 𝑢𝑗𝑘 + 𝑢𝑘𝑖)

are integer-valued, and so must be constant. The collection of these 𝑧 functions forms a Čech 2-cocycle, and
its cohomology class [𝑧] ∈ �̌�2(𝑀, ℤ) agrees precisely with the class 𝑓𝑟𝑎𝑐12𝜋ℏ[𝜔].5

This integrality condition is satisfied trivially in the case of ℝ𝑛 × ℝ𝑛, since the symplectic form is exact
and thus its cohomology class is zero. In fact, in the case of any cotangent bundle, the canonical symplectic
form is exact and so its cohomology class is zero. This is good news! This tells us that we can at least attempt
to quantize classical systems.

We say that a symplectic manifold that satisfies the integrality condition is prequantizable.
5For more details into this Čech-de Rham correspondence, check Woodhouse, Section A.6.
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7 Reducing the number of variables: Polarizations

Now that we’ve dealt with the problem that the quantization of a function depended on the choice of a
symplectic potential, we move on to discuss the other problem: How do we generalize the idea of a function
depending only on “half the number of variables” to a symplectic manifold, where the choice of (Darboux)
coordinates is not canonical?

Let’s look at the specific example of ℝ𝑛 × ℝ𝑛 and let’s try to see how to take it to a coordinate-free
context. We said that the true set of wavefunctions was 𝐿2(ℝ𝑛), functions that depend only on the position
coordinates 𝑞𝜇 but not on the momenta 𝑝𝜇.

In a symplectic manifold, we don’t have a consistent choice of every 𝑞𝜇 and 𝑝𝜇 globally. However, we
can relax this and simply ask a splitting of the local coordinates into 𝑞’s and 𝑝’s in such a way that they don’t
get mixed together as we move around the manifold. Maybe when we change charts, the 𝑞’s get mixed among
themselves, maybe the 𝑝’s get mixed among themselves, but we don’t have 𝑞’s turning into 𝑝’s or vice-versa.
This way, we can have a notion of a function being “independent from the 𝑝’s” without actually having
globally-defined symplectic coordinates. We just need a notion of “directions along the momenta” at each
point, and so a function whose derivative vanishes along those directions will be independent of the mo-
menta.

How do we achieve this in practice? At each point 𝑥 ∈ 𝑀, we want to choose a half-dimensional sub-
space 𝑃𝑥 of the tangent space 𝑇𝑥𝑀. This half-dimensional subspace will be the space of “momentum direc-
tions”, but what does that mean exactly? How can we make sure that we don’t introduce “position direc-
tions” in 𝑃𝑥? Well, in the standard case ofℝ𝑛 ×ℝ𝑛, each position direction 𝜕

𝜕𝑞𝜇
is paired with a momentum

direction 𝜕
𝜕𝑝𝜇

in such a way that 𝜔( 𝜕
𝜕𝑞𝜇

, 𝜕
𝜕𝑝𝜇

) = 1. If we fix some direction 𝜕
𝜕𝑝𝜇

, for all other momenta

directions 𝜕
𝜕𝑝𝜈

, we will have

𝜔( 𝜕
𝜕𝑝𝜇

, 𝜕
𝜕𝑝𝜈

) = 0.

So if we have a collection of 𝑛 independent vectors 𝑣1, … , 𝑣𝑛, we know that they are all “of the same type”
if the symplectic form vanishes on all of them:

𝜔(𝑣𝜇, 𝑣𝜈) = 0.

The subspace spanned by 𝑣1,… , 𝑣𝑛 is half-dimensional and the symplectic form vanishes on it; i.e., it is a
Lagrangian subspace.

So that’s it! What we want is a choice of a Lagrangian subspace 𝑃𝑥 ⊂ 𝑇𝑥𝑀 at every point. This choice
depend smoothly on 𝑥, so that we get a Lagrangian distribution 𝑃 ⊂ 𝑇𝑀. Furthermore, we want to be able
to choose coordinates locally that are adapted to this distribution, so it must also be integrable. We say that
an integrable Lagrangian distribution on𝑀 is a polarization.

With a polarization 𝑃, we can restrict the space of states to those wavefunctions (sections of the pre-
quantum line bundle) that are covariantly constant along 𝑃. That is, we say that the quantum state space
ℋ(𝑀,𝜔, 𝑃) associated to the symplectic manifold (𝑀, 𝜔) and polarization 𝑃 is the set of sections 𝜓 of 𝐿
which satisfy that for all 𝑋 ∈ 𝑃,

∇𝑋𝜓 = 0.
In the case of ℝ𝑛 × ℝ𝑛, the “standard” distribution is the vertical distribution, which is spanned by

the momentum directions 𝜕
𝜕𝑝𝜇

. We then have that a section 𝜓 of the prequantum line bundle 𝐿 is in the

quantum state space if for all 𝜇,

∇ 𝜕
𝜕𝑝𝜇

𝜓 = 𝜕𝜓
𝜕𝑝𝜇

= 0,

which is precisely what we wanted.
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8 Restricting the set of quantizable observables

We fixed the “too many variables” problem by introducing a polarization and asking the quantum states to
be sections of the prequantum line bundle that are covariantly constant along the polarization. But now
we need the quantization of a function to preserve this property! We say that a function 𝑓 ∈ 𝐶∞(𝑀) is
quantizable with respect to a polarization 𝑃 if it preserves the quantum state space ℋ(𝑀,𝜔, 𝑃). That is, if
𝜓 is covariantly constant along 𝑃, then ̂𝑓𝜓must also be covariantly constant along 𝑃. This is, for 𝑋 ∈ 𝑃,

∇𝑋( ̂𝑓𝜓) = −𝑖ℏ∇𝑋∇𝑋𝑓𝜓 + ∇𝑋(𝑓𝜓)
= −𝑖ℏ (𝑅(𝑋, 𝑋𝑓) + ∇𝑋𝑓∇𝑋𝜓 + ∇[𝑋,𝑋𝑓]𝜓) + 𝑓∇𝑋𝜓 + d𝑓(𝑋)𝜓

= −𝑖ℏ ( 𝑖ℏ𝜔(𝑋, 𝑋𝑓)𝜓 + ∇[𝑋,𝑋𝑓]𝜓) + 𝜔(𝑋𝑓, 𝑋)𝜓

= −𝑖ℏ∇[𝑋,𝑋𝑓]𝜓 = 0.

Here we used the fact that the curvature of the connection is 𝑖
ℏ
𝜔 and 𝜄𝑋𝑓𝜔 = d𝑓. In conclusion, a sufficient

condition for ̂𝑓 to preserve 𝜓 being covariantly constant is that

[𝑋𝑓, 𝑋] ∈ 𝑃 for all 𝑋 ∈ 𝑃.

So we say that the set of quantizable observables Obs(𝑀, 𝜔, 𝑃) ⊂ 𝐶∞(𝑀) is

Obs(𝑀, 𝜔, 𝑃) = {𝑓 ∈ 𝐶∞(𝑀)|[𝑋𝑓, 𝑋] ∈ 𝑃 for all 𝑋 ∈ 𝑃} .

It can be readily checked that forℝ𝑛 ×ℝ𝑛 with the vertical distribution, the quantizable observables are the
functions 𝑓 ∈ 𝐶∞(ℝ𝑛 × ℝ𝑛) satisfying

𝜕2𝑓
𝜕𝑝𝜈𝜕𝑝𝜇

= 0.

Therefore a function 𝑓 is quantizable if and only if it is at most linear in the 𝑝 variables, i.e. it is of the form

𝑓(q, p) = 𝑔(q) + ℎ𝜇(q)𝑝𝜇,

for some functions 𝑔, ℎ𝜇 ∈ 𝐶∞(ℝ𝑛).
Surprise surprise. The kinetic energy 𝑝2/2𝑚 is not quantizable. Oh my god. How is this okay? The

free particle is not quantizable. With this polarization, which is the most natural one, essentially none of the
physically significant Hamiltonians are quantizable.

9 Takeaway, or, Oh no I’m angry about geometric quantization again

We took a few steps towards formalizing the canonical quantization rule of physics. The first task was prop-
erly defining the problem: find a quantization rule that takes observables 𝑓 on a symplectic manifold, and
returns operators 𝑓 on some Hilbert space, satisfying the canonical commutation rule

[𝑓, ̂𝑔] = 𝑖ℏ{̂𝑓, 𝑔}.

Unfortunately, this cannot be done in a way that is consistent with all our desired axioms of quantization,
so we had to throw out a few.

After that, we looked for a quantization of general symplectic manifolds. Our inspiration was the Lie
algebra (anti-)homomorphism of the Poisson structure on a symplectic manifold and Hamiltonian vector
fields,

𝑓 ↦ 𝑋𝑓
{𝑓, 𝑔} ↦ 𝑋{𝑓,𝑔} = −[𝑋𝑓, 𝑋𝑔].
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Multiplying by 𝑖ℏ we get a naive quantization rule, and after a few corrections we obtained a proper quanti-
zation of functions.

So in summary, we got the following: A symplectic manifold (𝑀, 𝜔) is prequantizable if its symplectic
form satisfies the integrality condition:

1
2𝜋ℏ[𝜔] ∈ 𝐻2(𝑀, ℤ).

In this case, there exists a prequantum line bundle 𝐿 → 𝑀, whose first Chern class is precisely 𝑐1(𝐿) =
1

2𝜋ℏ
[𝜔], along with a connection∇with curvature 𝑖

ℏ
𝜔, which we call the prequantum connection.

Now given a polarization 𝑃 ⊂ 𝑇𝑀, which is an integrable Lagrangian distribution, we define the quan-
tum state space associated to (𝑀, 𝜔, 𝑃), as the space of sections of 𝐿 that are covariantly constant along
𝑃:

ℋ(𝑀,𝜔, 𝑃) = {𝜓 ∈ Γ(𝐿) ∶ ∇𝑋𝜓 = 0 for all 𝑋 ∈ 𝑃} .
The space of quantizable observables is

Obs(𝑀, 𝜔, 𝑃) = {𝑓 ∈ 𝐶∞(𝑀)|[𝑋𝑓, 𝑋] ∈ 𝑃 for all 𝑋 ∈ 𝑃} ,

and the quantization of a quantizable observable 𝑓 ∈ Obs is

̂𝑓 = −𝑖ℏ∇𝑋𝑓 + 𝑓.

This quantization scheme satisfies a lot (but not all) of the properties that we expect from a quantization
scheme.

So what’s missing? The biggest problem is that the space of quantizable observables is hilariously small.
Even in the simplest case of canonical quantization of ℝ𝑛 × ℝ𝑛 and the obvious choice of a polarization, we
can only quantize functions that are at most linear in momentum. That means no kinetic energy. We can
choose another polarization (like the horizontal polarization, spanned by the position directions), but now
we can only quantize things that are linear in position (so, for example, no harmonic oscillator).

If we are looking at the harmonic oscillator though, there is a way to quantize it with the scheme above,
but that requires extending our notion of polarizations and allowing complex distributions. However, even
in this case, the quantization is not correct: the spectrum of the harmonic oscillator has an incorrect ground
state energy. There’s ways to fix this, though,6 but even then there’s still a lot to be desired because we are
left with a huge and cumbersome structure that’s needed to quantize the simplest physical system. And to be
honest, if your quantization scheme needs so many complicated modifications and conditions to quantize
the harmonic oscillator properly, then maybe you should re-think it.

So why do we care about geometric quantization?
Well... I think we don’t? If bywe you mean most physicists. It is abundantly clear that it is a cumbersome

tool which doesn’t have much use in physics, and it barely even works even for the simplest systems. However,
there is one problem where it seems to work pretty well: quantum Chern-Simons theory. Without going into
much detail, this is a topological quantum field theory of three-manifolds, and it can in some cases be written
nicely in terms of the geometric quantization of some rather complicated moduli spaces... Which is weird.
Why would geometric quantization work for a horribly complicated topological quantum field theory, but
not for the harmonic oscillator?

For mathematicians, though, geometric quantization is a new(ish) geometric toy to play around with
that has axioms and theorems and conjectures. If we’re still interested in making geometric quantization
work regardless of it’s applicability to physics, then there’s a few questions that still need to be addressed, the
most important of which is the dependence on the polarization. If we choose different polarizations, we get
different quantizations, but we don’t see anything like this in quantum mechanics. In quantum mechanics,

6With something called the metaplectic correction, which I won’t get into
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we just... quantize. No polarization, no fuss. So we expect that geometric quantization is independent from
the polarization?

In what sense exactly, though? There’s mainly two ways to see this. The first idea was pioneered by
Kostant and Sternberg,7 and it consists of noticing that in quantum mechanics one can also work with wave-
functions defined in the momentum variables only, and that the 𝑞-wavefunctions and the 𝑝-wavefunctions
are related by a Fourier transform. In our geometric language, this means that there is a Fourier transform
map relating the quantizations with the vertical and horizontal polarizations, call it 𝐹 ∶ ℋ𝑞 ↦ ℋ𝑝. So
in general, with two transverse polarizations 𝑃, 𝑃′, we expect to find a generalized Fourier transform map
𝐹 ∶ ℋ𝑃 →ℋ𝑃′ .8

The other way to think about this was pioneered by Axelrod, della Pietra, Witten, and Hitchin. Suppose
that you have a collection of polarizations that can be parametrized by a manifold𝒯. For each point 𝜎 ∈ 𝒯,
we have a polarization𝑃𝜎 in𝑇𝑀, and we can get the quantizationℋ𝜎 with respect to this polarization. If the
collection of polarizations is good enough, we hope that these quantizations can be put together into a vector
bundleℋ over𝒯, such thatℋ𝜎 is the fiber above 𝜎 ∈ 𝒯.

If we have two polarizations represented by𝜎0,𝜎1, we can take a path𝜎(𝑡) in parameter space connecting
them, and if we had a connection on this vector bundle, then parallel transport along𝜎(𝑡)would identify the
fibers ℋ𝜎0 and ℋ𝜎1 . However, this should be independent from the choice of the path, so the connection
should be flat. Or almost. Now we play the “ah but quantum mechanics is in the projectivization of the
Hilbert space!” card so it suffices to have a connection that is projectively flat. This is called a Hitchin
connection.

parallel transport

Neither of these approaches has been proved in general, only in a few specific cases.
As a mathematical theory, geometric quantization has been steadily developed since its introduction in

the late 60’s, and since then it has lost almost all of its intentions of becoming an useful theory for physics.
My biggest gripe with it is the complete loss of focus on the observables: it focuses almost entirely on the con-
struction of Hilbert space, and the quantization of observables is forgotten, which is ridiculous because that
was the initial motivation for all the geometric constructions! The Hilbert space is the least important part
of a quantum theory: there’s ways to do quantum mechanics without a Hilbert space, and interacting quan-
tum field theory doesn’t even have a well-defined underlying Hilbert space of states. Quantum mechanics is
a theory about observables, not states.

Oh no, I’m angry about geometric quantization again.
7He mentions it first in Symplectic Spinors, 1974.
8Funnily enough, in trying to realize this map explicitly, Kostant and Sterberg found the need for taking square roots of the

volume form, i.e. of finding a metaplectic structure on the symplectic manifold. So the metaplectic correction was never motivated
in fixing the wrong spectrum of the harmonic oscillator, it was just a technicality needed to relate two polarizations! Todo mal.
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10 The gory details

First, we want to show that our first correction of the naive quantization rule breaks the commutations rela-
tions. The quantization rule is

𝑓 ↦ ̂𝑓 = −𝑖ℏ𝑋𝑓 + 𝑓.
So take 𝑓, 𝑔 ∈ 𝐶∞(𝑀). We have

[𝑓, ̂𝑔] = [−𝑖ℏ𝑋𝑓 + 𝑓,−𝑖ℏ𝑋𝑔 + 𝑔]
= −ℏ2[𝑋𝑓, 𝑋𝑔] − 𝑖ℏ([𝑓, 𝑋𝑔] + [𝑋𝑓, 𝑔])

The commutator of a vector field 𝑋 an a function 𝑔 acts on a function 𝜓 as

[𝑋, 𝑔]𝜓 = 𝑋[𝑔𝜓] − 𝑔𝑋[𝜓] = 𝑔𝑋[𝜓] + 𝑋[𝑔]𝜓 − 𝑔𝑋[𝜓] = 𝑋[𝑔]𝜓,

and therefore we write
[𝑋, 𝑔] = 𝑋[𝑔].

With this, the commutator of ̂𝑓 and ̂𝑔 becomes

[𝑓, ̂𝑔] = ℏ2𝑋{𝑓,𝑔} − 𝑖ℏ(𝑋𝑓[𝑔] − 𝑋𝑔[𝑓])
= ℏ2𝑋{𝑓,𝑔} − 𝑖ℏ({𝑔, 𝑓} − {𝑓, 𝑔})
= ℏ2𝑋{𝑓,𝑔} + 2𝑖ℏ {𝑓, 𝑔}
= 𝑖ℏ (−𝑖ℏ𝑋{𝑓,𝑔} + {𝑓, 𝑔}) + 𝑖ℏ {𝑓, 𝑔}
= 𝑖ℏ({̂𝑓, 𝑔} + {𝑓, 𝑔}).

So indeed, we have a leftover term.
Now We want to show that once we choose a gauge (i.e. a symplectic potential) 𝜃, the quantization rule

𝑓 ↦ ̂𝑓 = −𝑖ℏ𝑋𝑓 + 𝑓 − 𝜃(𝑋𝑓)

satisfies the canonical commutation relations. From the result above, we can skip a few steps, since the terms
𝑓 and 𝜃(𝑋𝑔) commute (because they’re just multiplication by scalars).

[𝑓, ̂𝑔] = [−𝑖ℏ𝑋𝑓 + 𝑓 − 𝜃(𝑋𝑓), −𝑖ℏ𝑋𝑔 + 𝑔 − 𝜃(𝑋𝑔)]
= ℏ2𝑋{𝑓,𝑔} + 2𝑖ℏ {𝑓, 𝑔} + 𝑖ℏ([𝑋𝑓, 𝜃(𝑋𝑔)] + [𝜃(𝑋𝑓), 𝑋𝑔])
= ℏ2𝑋{𝑓,𝑔} + 2𝑖ℏ {𝑓, 𝑔} + 𝑖ℏ(𝑋𝑓[𝜃(𝑋𝑔)] − 𝑋𝑔[𝜃(𝑋𝑓)]).

Now we use the fact that for any 1-form 𝛼 and vector fields 𝑋, 𝑌 ,

d𝛼(𝑋, 𝑌) = 𝑋[𝛼(𝑌)] − 𝑌[𝛼(𝑋)] − 𝛼([𝑋, 𝑌]),

so that the rightmost term is

𝑋𝑓[𝜃(𝑋𝑔)] − 𝑋𝑔[𝜃(𝑋𝑓)] = d𝜃(𝑋𝑓, 𝑋𝑔) + 𝜃([𝑋𝑓, 𝑋𝑔])
= −𝜔(𝑋𝑓, 𝑋𝑔) − 𝜃(𝑋{𝑓,𝑔})
= − {𝑓, 𝑔} − 𝜃(𝑋{𝑓,𝑔}).

Putting everything back together, we get

[𝑓, ̂𝑔] = ℏ2𝑋{𝑓,𝑔} + 2𝑖ℏ {𝑓, 𝑔} − 𝑖ℏ {𝑓, 𝑔} − 𝑖ℏ𝜃[𝑋{𝑓,𝑔}]
= 𝑖ℏ (−𝑖ℏ𝑋{𝑓,𝑔} + {𝑓, 𝑔} − 𝜃[𝑋{𝑓,𝑔}])
= 𝑖ℏ{̂𝑓, 𝑔}.
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