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The objective of the following posts is to attempt to give an answer to the age-old question: What is a
gauge field?

That’s a tall order, alright. In order to understand what gauge fields are, I hope to construct a direct
dictionary between classical gauge fields as physicists know them, and the language of principal bundles that
mathematicians use. The parallel between both is striking, but I haven’t found an actual dictionary that lets
you go straight from one to the other. And well, since I’m a completionist it doesn’t just suffice to spell it out,
but rather to build it nicely.

This first part does not have too many prerrequisites: only the basics of electromagnetism. I’ll try to be
as self-contained as possible in the physics part. Without further ado, let’s begin.

1 Potentials for the electric and magnetic field

In Gaussian units, the microscopic (or vacuum) Maxwell equations are
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where � is the electric charge density and J is the electric current density. Here, the fields E;B, and the
current density J are time-dependent vector fields on some open subset of U � R3,

E;B; J W R � U ! R3;

and the charge density � is a time-dependent scalar function on U ,

� W R � U ! R:

The objective with these equations is to determine the electric and magnetic fields E;B, given the source
functions J and � (and boundary conditions and all that so that the PDE is actually soluble).

Now we have a trick to make it easier to find a solution to the equations. The trick is to see that we can
automatically satisfy the homogeneous equations (on the left) by a clever rewriting of E and B. Indeed, the
equation r � B D 0 suggests (but does not imply1 ) that we write

B D r � A;

1See the previous post on the Hodge star.
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for some other vector field A, which we call the magnetic vector potential. Once we have this, the other
homogeneous equation becomes
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Again, this suggests (but not always implies2) that we write
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or rather
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for some function � which we call the electric potential (the negative sign is a convention3). For such
choices of A and �, the homogeneous Maxwell equations are immediately satisfied. Of course the choice of
A and � must be such that the inhomogeneous equations are still satisfied, but this reduces the problem from
finding two vector fields E, B satisfying the full Maxwell equations to finding one scalar field � and a vector
field A that satisfy the (admittedly ugly) equations
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Of course, the choice of A and � are not unique. Once we have a choice of A and �, then for any smooth
scalar field ƒ, we can change A as

A0 D ACrƒ;

and of course we will still obtain

r � A0 D r � ACr � .rƒ/ D r � A D B:

Then A0 D ACrƒ is also another magnetic vector potential for B. Under this new magnetic potential, we
have for the electric field
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and so if we define a “new” electric potential �0 as
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we still can write
E D �r�0 �

1

c
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@t
:

This tells us that the pair A0; �0 is another perfectly good choice of potentials for E and B.
In summary, the homogeneous Maxwell equations suggest that we write the electric and magnetic fields

E, B in terms of the potentials A and �. Once we have done that, we can reduce Maxwell’s equations on E

2See the previous post on the Hodge star.
3which does have a neat physical interpretation in terms of energy, but which we shall not discuss.
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and B to two (hopefully easier) equations the potentials A; �. Once we have found such potentials A; �, we
can recover the electric and magnetic fields as

B D r � A;

E D �r� �
1

c

@A
@t
:

The choice of potentials A; � is not unique, since for any smooth scalar fieldƒ, we can define new potentials
A0; �0 as

A0 D ACrƒ;
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;

and we still obtain the same E, B. When we change the potentials using a function ƒ (which remember, can
be any smooth function), we say that we are applying a gauge transformation to the fields, and we say that
ƒ is a gauge function. Of course, since the fields E and B do not change under such transformations, we say
that they are gauge invariant. This property is also often called a local symmetry, since we are applying a
“transformation” that does not change the fields (that’s why it’s a symmetry), and this transformation can be
done differently at every point in space-time (since ƒ can be any smooth function). That’s where the word
local comes from.

2 In special-relativistic notation

Let’s go back to square one, and let’s rewrite this more neatly4 in the Minkowski spacetime of special
relativity. The space we are working in isM D R � U � R4, with global coordinates

x0 D ct; x1 D x; x2 D y; x3 D z;

where c is the speed of light in your favorite units. We also have a metric � given in coordinates as

� D dx0 ˝ dx0 �
3X
iD1

dxi ˝ dxi D ���dx� ˝ dx� :

Here we used Einstein’s notation, and we will follow the usual conventions of raising and lowering indices
for the isomorphism TM Š T �M induced by the metric5.

Now we (rather arbitrarily) define a 2-form F 2 �2.M/, called the Faraday or electromagnetic tensor
whose components with respect to these coordinates are

ŒF�� � D

0BB@
0 E1 E2 E3
�E1 0 �B3 B2
�E2 B3 0 �B1
�E3 �B2 B1 0

1CCA :
This definition, at the time, is quite arbitrary but it can be shown6 that is it a somewhat natural construction
that pops up in Maxwell’s equations. A note on notation: Let’s think of the bold symbols as overriding

4For our purposes, this rewriting is simply for the sake of making everything clearer. What we are really doing is rewriting the
equations of electromagnetism in the language of special relativity. It is no coincidence that this amounts just to a rewritingwithout any
modifications to the equations of electromagnetism: special relativity was essentially made to work with classical electromagnetism.
See the end of Jackson (or any decent book on relativity) for more details on special-relativistic electromagnetism.

5For more details on this check any decent book on relativity, for example Carroll, D’Inverno or Schutz.
6Uhh stay tuned for another post, I guess?

3



Einstein’s notation. This equation should be seen literally, component-wise, e.g. F01 D E1, and of course
the Einstein notation doesn’t add up here. It doesn’t matter too much at this point7.

A key feature of the electromagnetic tensor is that it is a closed 2-form, that is, its de Rham differential
vanishes. The computation is a bit tedious but we’ll give a few components just so that this is not completely
blind faith. Recall that the de Rham differential of a k-form ! 2 �k.M/ is a .kC 1/-form with components

.d!/�1:::�k� D kŠ.k C 1/@Œ�!�1:::�k�:

The bracket stands for the total antisymmetrization of the indices in it. Applying this to the Faraday tensor,
we obtain
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(that is, the third component of the equation, not the equation cubed) and similarly for the components
.dF /013 and .dF /023. For the last component,
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If we compute the other two components we will see that the components of dF are precisely the components
of the homogeneous Maxwell equations. Therefore, we have that

dF D 0 ,
r � EC
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D 0

r � B D 0
:

Thus, if we assume that Maxwell’s equations hold, then F is a closed 2-form, and this suggests8 we write

F D dA

for some 1-form A 2 �1.M/, called the electromagnetic potential. In components, this is

F�� D
@A�

@x�
�
@A�

@x�
;

where A D A�dx�. This electromagnetic potential corresponds to the electric and magnetic potentials �;A
as

A0 D � Ai D �Ai :

The annoying sign for the spacial indices tell us that A should be more naturally thought of as a vector field
instead of a 1-form. Raise that index!9

A0 D � Ai D Ai

Ah, much better. Indeed, we have for i � 1,

F0i D Ei D
@Ai

@x0
�
@A0

@xi
D

�
�
1

c

@A
@t
� r�

�i
;

7This can be fixed by introducing new 4-vectors E;B with E0 D 0;Ei D Ei (same for B), and then lowering the index and
defining F0i WD �Ei D Ei D Ei (and equivalently for B) but that’s too much work and potentially more confusing.

8But does not imply! Again, this depends onH2.M/ Š H2.U / being trivial.
9Index gymnastics with the Minkowski metric is quite easy: In my convention (the one true convention, fight me) with positive

time and negative space, the time index remains the same while the space indices gain a negative sign whenever they are raised or
lowered (as can be easily checked).
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and for instance,
F21 D B3 D

@A1

@x2
�
@A2

@x1
D .r � A/3 :

This tells us that the choice of a primitiveA forF such that dA D F is exactly the same as choosing potentials
�;A for the electric and magnetic fields E, B as in the previous section.

Once again, we have that the choice of electromagnetic potential is not unique, since we can add to A
any closed 1-form dƒ (for a function ƒ 2 C1.M/) and still obtain the same electromagnetic tensor F . If
A0 D A � dƒ, then

dA0 D d.A � dƒ/ D dAC d2ƒ D dA D F:

In components, A0 looks like

A00 D �
0
D A0 �

@ƒ

@x0
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1
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A0i D �A
0i
D Ai �

@ƒ

@xi
D �.ACrƒ/i :

Thus we recover the same equations for a gauge transformation:

A0 D A � dƒ ,

A0 D ACrƒ;

�0 D � �
1

c

@ƒ

@t

Again, to summarize, we can put together the electric and magnetic fields into a 2-form F , the electro-
magnetic tensor, which satisfies

dF D 0:

This equation is automatically satisfied if there is a 1-form A such that F D dA. In this case we call A an
electromagnetic potential for F . The choice of potential is not unique, for we can add any closed 1-form dƒ
to A and obtain the same electromagnetic tensor. The new electromagnetic potential is, then

A0 D A � dƒ:

This is called a gauge transformation, and the ability to change the potentials is called a gauge freedom (or
symmetry).

What about the inhomogeneous Maxwell equations? Well, that’s a little bit more tricky. Let’s write all
the equations again:

r � EC
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c
J

r � B D 0 r � E D 4��:

Note that in the inhomogeneous equations, the roles of E and B seem to be reversed, except for a sneaky
negative sign. What is this inhomogeneous equation in terms of the electromagnetic tensor F ?

If you’ve already seen this then: 1. why are you even reading this post and 2. you already know that the
inhomogeneous equations, in components, take the form

@F ��

@x�
D 4�J � ;

where J is a vector field whose components are

J 0 D �I J i D
1

c
Ji ; for i � 1:

5



Okay this is good and all, but we want a coordinate-free way to write this. Let’s try to reverse-engineer
the equation. We have that F is a 2-form, and we want to relate it via some sort of “divergence” with a vector
field. Instead of that, we can simply convert the vector field J into a 1-form using the metric, but still we
need to take a derivative of F . The problem is that the de Rham differential d will annihilate F , and even if
it didn’t, it would turn F into a 3-form. No bueno!

Instead we want to find a way to switch the roles of E and B in the Faraday tensor, so that the resulting
tensor does not vanish when we apply the exterior differential. We would then have a three-form, which we
want to somehow relate to the current one-form.

If this sounds familiar to you, then you’ve probably heard of the Hodge dual or Hodge star operator.
Briefly, if you have a metric g on a manifold M then there is an isomorphism ? W �k.M/ ! �n�k.M/,
such that for all k-forms !; �

˛ ^ ?ˇ D g.˛; ˇ/vol;

where vol is the volume form associated to the metric and the metric evaluated on k-forms is defined as

g.˛; ˇ/ WD
1

kŠ
˛�1:::�kˇ�1:::�k

:

We’ve discussed the Hodge star in depth in a previous post. It can be shown that, in coordinates, the
components of the Hodge star of a k-form ˇ are

.?ˇ/�1:::�n�k
D ˙

p
j det.g/j
kŠ

ˇ�1:::�k��1:::�k�1:::�n�k
;

where � is the Levi-Civita symbol. In particular, we will care about the stars of wedges of the basis one-forms
dx�. In the previous post we showed that if

˚
e1; : : : ; en

	
is an orthonormal basis then

?.e�1 ^ � � � ^ e�k / D g�1�1 : : : g�k�k��1:::�k�1:::�n�ke�1 ^ � � � ^ e�n�k (no Einstein sum);

where f�1 : : : �n�kg is the complement of f�1; : : : ; �kg in f0; : : : ; n � 1g. In our case, k D 2 and n D 4 and
the one-forms dx� are orthonormal, so that

?.dx0 ^ dx1/ D �00�11�0123dx2 ^ dx3 D �dx2 ^ dx3:

In a similar fashion, we can show that

?.dx0 ^ dx2/ D dx1 ^ dx3

?.dx0 ^ dx3/ D �dx1 ^ dx2

?.dx1 ^ dx2/ D dx0 ^ dx3

?.dx2 ^ dx3/ D dx0 ^ dx1

?.dx3 ^ dx1/ D dx0 ^ dx2:

Thus, if we rewrite the Faraday tensor as

F D E1dx0 ^ dx1 C E2dx0 ^ dx2 C E3dx0 ^ dx3

� B1dx2 ^ dx3 � B2dx3 ^ dx1 � B3dx1 ^ dx2;

we obtain

?F D �E1dx2 ^ dx3 C E2dx1 ^ dx3 � E3dx1 ^ dx2

� B1dx0 ^ dx1 � B2dx0 ^ dx2 � B3dx0 ^ dx3;
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which in matrix form is

Œ.?F /�� � D

0BB@
0 �B1 �B2 �B3
B1 0 �E3 E2
B2 E3 0 �E1
B3 �E2 E1 0

1CCA :
Thus, we have that the roles of B and E in ?F are reversed from those in F , with a sneaky negative sign.
Morally, applying the ? operator gives
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Now we have that d.?F / is a three-form, some of whose components are
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If we put it all together, we obtain
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We see that on the right-hand side we have the components of the 4-current J , but as a three-form. If we
let j be the one-form with components J� (i.e., with the lowered index), we have

j D �dx0 �
1

c

�
J1dx1 C J2dx2 C J3dx3

�
;

so that

?j D �dx1 ^ dx2 ^ dx3 �
1

c

�
J3dx0 ^ dx1 ^ dx2 C J2dx0 ^ dx3 ^ dx1 C J1dx0 ^ dx2 ^ dx3

�
:

Thus, we identify:
d ? F D �4� ? j:

This can also be written as
?d ? F D 4�j:

Finally, we obtain the Maxwell equations written in a coordinate-free way in terms of differential forms:

dF D 0; ?d ? F D 4�j:

These are the field equations of the electromagnetic field. The homogeneous equation dF D 0 talks
about conservation of charge, and the inhomogeneous equation ?d?F D 4�j tells how the electromagnetic
field F responds to the presence of charges and currents (represented by j ). The form of these equations is
typical of a gauge field, as we shall see in future posts.
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3 Takeaway and future

We saw that the inhomogeneous Maxwell equations allow (in some cases, depending on the topology of the
underlying space) us to write the electric and magnetic fields E;B in terms of simple, auxiliary potentials
�;A. The choice of these potentials is not unique, and the fields E;B remain invariant under certain
transformations of the potentials, called gauge transformations. At this point, the potentials are no more
than auxiliary mathematical objects that help us solve Maxwell’s equations, but we shall see that they can be
attributed a physical interpretation in the quantum case.

We also saw a unifying description of the electric and magnetic fields into an electromagnetic tensor in
4D spacetime, and we rewrote Maxwell’s equations in a neater form that is typical of gauge fields (as we
shall see in the future).

What comes next is adding matter to this whole issue: introducing objects that can interact with the
electromagnetic field. We will also see a Lagrangian description of the field equations, which again will be
typical of gauge fields.
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