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This time we’re going to be more concrete. The general theory of many-particle states can be quite tricky
and unintuitive, so it’s better to start everything with the simplest example: a 2-state system.

Last time in Homotopico, we derived the Hilbert spaces that correspond to multiple identical particles. If
a single particle is represented by the Hilbert space H, then there are two kinds of indistiguishable k-particle
spaces: the bosonic space SkH and the fermionic space ƒkH. These spaces are defined in terms of the
permutation operators P� (in the previous post I called them T� ), which are the natural representation of the
permutation group Sk on˝kH: for each � 2 Sk , define

P� j 1 : : :  ki D j �.1/ : : :  �.k/i:

The bosonic space is composed of vectors that are permutation invariant,

SkH D
n
j‰i 2 ˝kH W P� j‰i D j‰i 8� 2 Sk

o
;

while the fermionic space is composed of vectors that are reversed under odd permutations, i.e.

ƒkH D
n
j‰i 2 ˝kH W P� j‰i D sgn.�/j‰i 8� 2 Sk

o
:

It can be checked that these are indeed Hilbert spaces (we won’t do that here). What we will do now is
constructing state spaces with an arbitrary number of particles, instead of a fixed number of particles. Here,
we will first focus on a 2-state system, for example polarization of photons or spin-1

2
.
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1 Two states one particle

When we talk about a system with 2 states, we really mean that the Hilbert space H is of (complex) dimension
2. This tells us that we can find a basis fjai; jbig, such that hajai D hbjbi D 1 and hajbi D 0. In the case
of spin-1

2
systems, jai; jbi are normalized eigenstates of some spin operator, often OSz . In the case of photon

polarization, jai; jbi represent states of pure horizontal or vertical polarization with respect to some axis.
What the kets jai and jbi actually stand for (physically speaking) is irrelevant for our discussion. What is
important is that we have an orthonormal basis that consists of 2 vectors, which means that any (one-particle)
state in H can be written as

j i D ˛jai C ˇjbi;

with ˛; ˇ 2 C.

2 2-particle states

We now stick two of these one-particle spaces together via the tensor product. Recall that H ˝ H is the
vector space of linear combinations of elements of the form j 1 2i WD j 1i ˝ j 2i with j 1i; j 2i 2 H.
Since we have a basis jai; jbi of H, we can write

j 1i D ˛1jai C ˇ1jbi

j 2i D ˛2jai C ˇ2jbi;

so that

j 1 2i D .˛1jai C ˇ1jbi/˝ .˛2jai C ˇ2jbi/ D ˛1˛2jaai C ˛1ˇ2jabi C ˇ1˛2jbai C ˇ1ˇ2jbbi:

This means that, in general, any element of H˝H can be written as a linear combination of jaai; jabi; jbai; jbbi.
However, not every element of H ˝ H can be written as j 1 2i for some j 1i; j 2i 2 H. The elements
that can be written in this way are called product states.

If we define the inner product in H as

h 1 ˝  2j�1 ˝ �2i WD h 1j�1i h 2j�2i ;

it can be easily shown that fjaai; jabi; jbai; jbbig forms an orthonormal basis of H˝H.
We interpret the state j 1 2i as saying “particle 1 is in state j 1i and particle 2 is in state j 2i”. Since

in general j 1 2i ¤ j 2 1i, under this interpretation our particles are distinguishable. Indeed, that’s why
it even makes sense to speak of particle 1 and particle 2.

2.1 Introducing indistinguishability

In the previous post, we explained that the spaces of indistinguishable particles are those in which the per-
mutation transformation P W H˝H! H˝H, given by

P j 1 2i WD j 2 1i;

and extended everywhere by linearity, is an absolute symmetry. Equivalently, a state j‰i 2 H ˝ H (not
necessarily a product state!) represents indistinguishable particles if and only if

P j‰i D ˙j‰i:
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The bosonic states are the ones for which P j‰i D j‰i, and the fermionic states are the ones for which
P j‰i D �j‰i. In the previous post we showed that given a product state j‰i D j 1 2i, the state

1

2
.j 1 2i C j 2 1i/

is a bosonic state, while
1

2
.j 1 2i � j 2 1i/

is a fermionic state, and neither is necessarily normalized. Indeed, all the bosonic and fermionic 2-particle
states are expressed as linear combinations of elements of that form! To see this, consider an arbitrary state
j‰i. We can write it in terms of the basis as

j‰i D ˛11jaai C ˛12jabi C ˛21jbai C ˛22jbbi;

where ˛11; : : : ; ˛22 2 C are complex numbers. Now we apply P :

P j‰i D ˛11P jaai C ˛12P jabi C ˛21P jbai C ˛22P jbbi

D ˛11jaai C ˛12jbai C ˛21jabi C ˛22jbbi:

If P j‰i D ˙j‰i, this tells us that
˛11 D ˙˛11

˛12 D ˙˛21

˛22 D ˙˛22:

Note that if P j‰i D �j‰i (i.e. j‰i is fermionic), then ˛11 D �˛11, which means that ˛11 D 0, and
similarly ˛22 D 0. Substituting back in j‰i for the general case, we obtain:

j‰i D ˛11jaai C ˛12jabi C ˛21jbai C ˛22jbbi

D ˛11jaai C ˛12jabi ˙ ˛12jbai C ˛22jbbi

D ˛11jaai C ˛12 .jabi ˙ jbai/C ˛22jbbi

D
˛11

2
.jaai ˙ jaai/C

2˛12

2
.jabi ˙ jbai/C

˛22

2
.jbbi ˙ jbbi/; .?/

and therefore indeed j‰i is a linear combination of elements of the form

1

2
.j 1 2i ˙ j 2 1i/:

In particular, we can find bases for the boson and fermion 2-particle states. From equation .?/ we see that a
basis for the boson space is given by

jaai;
1

2
.jabi C jbai/; jbbi:

and so the boson space has dimension 3. We can now orthonormalize this basis, to obtain a (you guessed it),
orthonormal basis. It turns out that these three elements are already orthogonal, and jaai; jbbi are already
normalized (why?) so we only need to normalize the remaining one. This means that we have to calculate
its norm:

k.jabi C jbai/k2 D hab C bajab C bai

D .habjabi C habjbai C hbajabi C hbajbai/

D .hajai hbjbi C hajbi hbjai C hbjai hajbi C hbjbi hajai/

D .1C 0C 0C 1/

D 2;
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And this tells us that the normalized state is

1
p
2
.jabi C jbai/:

We have now obtained an orthonormal basis for the boson space, which we call the occupation number
basis. We define it as

j2; 0i WD jaai

j1; 1i WD
1
p
2
.jabi C jbai/

j0; 2i WD jbbi:

We interpret j2; 0i as a state with two particles in state jai and no particles in state jbi, j1; 1i as a state with
one particle in each statejai; jbi, and j0; 2i as a state with no particles in state jai and two particles in state
jbi (as in Figure 1).

Figure 1: Interpretation of the bosonic occupation number basis states.

Similarly, from equation .?/ for fermions, we see that a basis is given by the single element

jabi D
1

2
.jabi � jbai/:

Therefore we conclude that the fermion space is 1-dimensional. We can normalize this state to obtain the
occupation number basis for fermions (which in this case is a single, lonely state):

j1; 1i WD
1
p
2
.jabi � jbai/:

Note that there are no other independent states, and unlike the bosonic case, we don’t have states that
represent two particle in the same state. For fermions, no two particles are ever in the same state: this is
called Pauli’s exclusion principle.

3 3-particle states

Instead of jumping to the general n-particle case, we will consider the 3-particle states. Here, the permuta-
tions are much more complicated, and so a thorough understanding of this case will give us a good intuition
to work on the general case.

Our “distinguishable” 3-particle space is ˝3H D H ˝ H ˝ H, which is the vector space of linear
combinations of elements of the form j 1 2 3i D j 1i ˝ j 2i ˝ j 3i for j j i 2 H. Following the exact
same procedure as above, we can see that any element of˝3H can be expressed as

j‰i D ˛111jaaai C ˛112jaabi C ˛121jabai C ˛122jabbi

C ˛211jbaai C ˛212jbabi C ˛221jbbai C ˛222jbbbi;

for ˛ijk 2 C, and i; j; k D 1; 2.
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3.1 Introducing indistinguishability

Here’s where things get tricky, since there are many more permutations. This means that we need to introduce
a little bit more notation. Recall that a permutation of k numbers is a function � that reorders the set
.1; 2; : : : ; k/. For example, the function defined as �.1/ D 2, �.2/ D 3 and �.3/ D 1 is a permutation
of .1; 2; 3/. We may write it more concisely as � D .2; 3; 1/, or in general, � D .�.1/; : : : ; �.k// for a
permutation of k numbers. The set of all permutations of k numbers is denoted by Sk . It can be shown that
it is a group under composition, and that it has exactly kŠ elements.

Now in the case of 3 particles, we need to consider permutations of 3 numbers. There are 3Š D 6 such
permutations, namely:

(1,2,3) (3,1,2) (2,3,1)
(1,3,2) (2,1,3) (3,2,1)

:

Let’s recall the natural action of S3 on ˝3H. For each � 2 S3, define an operator P� which acts on
product states as

P� j 1 2 3i D j �.1/ �.2/ �.3/i:

This action is extended by linearity everywhere else (recall that not all elements are product states!). As a
particular example, choose � D .3; 1; 2/. So we have

P� j 1 2 3i D j 3 1 2i:

To be a bit more explicit, suppose j‰i D jabai � 2jbbai. Then

P� j‰i D P� jabai � 2P� jbbai D jaabi � 2jabbi:

As before, in order to talk about indistinguishability, we need to restrict ourselves to a subspace of˝3H
where the action of S3 is an absolute unitary symmetry. In the previous post we showed that the only way
is if either

P� j‰i D j‰i;

which is the bosonic case, or if
P� j‰i D .sgn �/j‰i;

which is the fermionic case.
Same as before, we will find an explicit basis for these bosonic and fermionic subspaces. In this case the

fermionic subspace is quite simple (perhaps too simple!), so we will start with it. Write j‰i again as

j‰i D ˛111jaaai C ˛112jaabi C ˛121jabai C ˛122jabbi

C ˛211jbaai C ˛212jbabi C ˛221jbbai C ˛222jbbbi;
;

and suppose that for all � 2 S3, P� j‰i D .sgn �/j‰i. The sign of a permutation of 3 numbers is 1 if it is a
cyclic permutation of .1; 2; 3/, and �1 if it is a cyclic permutation of .1; 3; 2/, as in Figure 2. For example,

Figure 2: Signs of permutations of 3 numbers

consider � D .1; 3; 2/, for which sgn � D �1. Note that � switches the elements 2 and 3. Then we have

P� j‰i D ˛111jaaai C ˛112jabai C ˛121jaabi C ˛122jabbi

C ˛211jbaai C ˛212jbbai C ˛221jbabi C ˛222jbbbi:
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However, we also need P� j‰i D �j‰i, so comparing above this implies that

˛111 D �˛111 ˛122 D �˛122 ˛211 D �˛211 ˛222 D �˛222

˛112 D �˛121 ˛212 D �˛221;

and so ˛111 D ˛122 D ˛211 D ˛222 D 0. Thus we write j‰i as

j‰i D ˛112.jaabi � jabai/C ˛212.jbabi � jbbai/:

Now we consider � D .3; 1; 2/, which is simply a cyclic permutation of .1; 2; 3/, and so sgn � D 1. We then
have

P� j‰i D ˛112.jbaai � jaabi/C ˛212.jbbai � jabbi/ D j‰i;

and this again tells us that ˛112 D �˛112 and ˛212 D �˛212, so ˛112 D ˛212 D 0. Therefore j‰i D 0 (!).
This tells us that there are no 3-particle fermionic states if the single-particle space has only 2 states! We
see this again as a case of Pauli’s exclusion principle: there cannot be two particles in the same state, but if
we have 3 particles that have to fit into only 2 states!

The bosonic case is a little bit more tedious, but let’s get to it. Again, expand ‰ in terms of the basis
vectors, and let’s impose P� j‰i D j‰i for all � 2 S3. Let’s consider a small term, for example ˛112jaabi.
Applying P� , we obtain ˛112jbaai, but the original coefficient that goes next to jbaai in the expansion of
j‰i is ˛211, so this tells us that

˛112 D ˛211:

Similarly, when we apply, for example � D .1; 3; 2/ (as above!) we must have ˛112 D ˛121. Therefore
˛112 D ˛211 D ˛121. Applying this exact same analysis, but to the term ˛221jbbai, we obtain that ˛221 D
˛212 D ˛122, so that j‰i can be written as:

j‰i D ˛111jaaai C ˛112.jaabi C jabai C jbaai/C ˛221.jbbai C jbabi C jabbi/C ˛222jbbbi:

This tells is that the subspace of bosonic states is generated by four vectors, namely:

jaaaiI jaabi C jabai C jbaaiI jbbai C jbabi C jabbiI and jbbbi:

Note that each of these elements is the sum over all the possible permutations of one of its terms. For
example, the element jaabiC jabaiC jbaai is the sum over all permutations of jaabi. In the case of jaaai
and jbbbi, all permutations of them are themselves again! This is also true for the case of two particles: each
of the basis elements of the bosonic space is the sum over all permutations of 2 numbers (of which there are
only two!) of the different basis elements.

Now, similarly as above, we normalize these four vectors (they are already orthogonal, why?), and obtain
an orthonormal basis

j3; 0i WD jaaai;

j2; 1i WD
1
p
3
.jaabi C jabai C jbaai/ ;

j1; 2i WD
1
p
3
.jbbai C jbabi C jabbi/ ;

j0; 3i WD jbbbi:

Once again, we interpret j3; 0i as a state where there are 3-particles in state jai and no particles in jbi; we
interpret j2; 1i as a state with 2 particles in state jai and one in state jbi, and so on. Once again, note that
these are not the only states. Any linear combination of j3; 0i; j2; 1i; j1; 2i; j0; 3i is again a valid bosonic
state!

These examples should now give us a good foothold for...
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4 The general case

Now we will consider a general Hilbert space H that allows for a countable basis. We will call the tensor
product˝kH the k-particle space without statistics, since it does not have indistinguishability implemented
yet.

4.1 Symmetrization and antisymmetrization (or bosonization and fermonization, if you will)

Our previous analysis gives us a suggestion: on ˝kH, define the symmetrization operator �C W ˝kH !
SkH as

�Cj‰i D
1

kŠ

X
�2Sk

P� j‰i:

This operator returns the sum over all possible permutations of j‰i, and we add the 1=kŠ to counteract some
overcounting. For example, if we apply �C to jaaai, we have that P� jaaai D jaaai for all � , and therefore
we are repeating the sum over the same element 3Š D 6 times, so the 1=3Š gets rid of that. Our previous
analysis suggests that for any element j‰i 2 ˝kH, its symmetrization is a bosonic state, i.e. �Cj‰i 2 SkH,
since any bosonic state can be written as a linear combination of elements of the form �Cj‰i (at least, we
showed this for k D 2 and k D 3 in the case H Š C2 is a 2-state system). This means that for all � 0 2 Sk ,
applying P� 0 to a symmetrized state should yield the same state:

P� 0.�Cj‰i/ D
1

kŠ

X
�2Sk

P� 0P� j‰i

D
1

kŠ

X
�2Sk

P� 0� j‰i

D
1

kŠ

X
�2Sk

P� j‰i

D �Cj‰i:

The third equality follows from the fact that the set f� 0� j� 2 Skg is precisely Sk . This is true since for
fixed � 0, since � D � 0.� 0�1�/, every element in Sk is of the form � 0� . Then �Cj‰i 2 SkH, as promised.

Similarly, we can define the antisymmetrization operator �� W ˝kH! ƒkH as

��j‰i D
1

kŠ

X
�2Sk

sgn.�/P� j‰i:

Indeed, applying �� to a vector j‰i returns an antisymmetric state (i.e. a fermionic state). This means that
applying a permutation operator P� 0 to an antisymmetrized state should yield the same state times the sign
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of the permutation:

P� 0.��j‰i/ D
1

kŠ

X
�2Sk

sgn.�/P� 0P� j‰i

D
1

kŠ

X
�2Sk

sgn.�/P� 0� j‰i

D
1

kŠ

X
�2Sk

sgn.� 0
�1
�/P� j‰i .?/

D
1

kŠ

X
�2Sk

sgn.� 0/ sgn.�/P� j‰i

D
sgn � 0

kŠ

X
�2Sk

sgn.� 0/ sgn.�/P� j‰i

D sgn.� 0/��j‰i:

The passing to equation .?/ follows from performing a “change of variables” � ! � 0�1� . This change of
variables is legitimate since, again

˚
� 0�1� j� 2 Sk

	
D Sk .

Then, as expected, applying the (anti)symmetrization operator on a vector returns an element of the
(anti)symmetric space. But even more, these (anti)symmetrization operators precisely define the bosonic
and fermionic spaces; that is,

SkH D �C.˝kH/:

ƒkH D ��.˝kH/:

Which is to say, every (anti)symmetric vector is the (anti)symmetrization of some other vector. One of the
inclusions we already proved, the other follows from noting, a little bit trivially, that if j‰i 2 SkH, then

�Cj‰i D
1

kŠ

X
�2Sk

P� j‰i

D
1

kŠ

X
�2Sk

j‰i

D j‰i;

and similarly for ƒkH. The antisymmetrization operator (and in general the fermion space) has a few
caveats, though. Note that above we saw that the fermion space of 3 particles for a 2-state system is...
problematic. We can’t fit 3 Pauli-excluding particles in 2 states, so the whole thing collapses to zero. This is
in fact a general feature of fermionic spaces of finite-dimensional Hilbert spaces.

Specifically, if H is n-dimensional, then for all k > n, we have ƒkH D f0g.
To see this consider the case k D nC 1. Consider an orthonormal basis fj�1i; : : : ; j�nig of H. Now let’s

try to take ƒnC1H. As we saw above, any element of ƒnC1H is the antisymmetrization of something else,
so let’s take and element of the natural basis of˝nC1H. This element is of the form

j�i1 : : : �inC1
i:

However, since there are more “slots” than vectors that we can fill them with (k > n), there must be some
repeated elements. For example, we might take

j‰i D j�1�1�2�3 : : : �ni;

where �1 is repeated so that it fills up all the slots. When take the antisymmetrization of j‰i, something hap-
pens which is illustrated with the following example: consider the identity permutation � D .1; 2; 3; : : : ; n/,
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which does nothing and the one that transposes the first two elements � 0 D .2; 1; 3; 4; : : : ; n/. These two
differ by a transposition, so sgn.�/ D � sgn.� 0/, and therefore when we add everything we will obtain two
terms

sgn.�/P� j�1�1�2�3 : : : �ni C sgn.� 0/P� 0 j�1�1�2�3 : : : �ni D j�1�1�2�3 : : : �ni � j�1�1�2�3 : : : �ni D 0:

The action of � 0 on j‰i is exactly the same as the one of � , precisely because of the repeated elements. This
tells us, more generally, that

��j 1 : : : � : : : � : : :  ni D 0;

whenever there are repeated elements. This, as above, happens because for every permutation � , there
is another permutation � 0 which differs from � by only one transposition, which precisely transposes the
places where the repeated elements land. Thus, everything collapses to zero.

This is again Pauli’s exclusion principle: If you have n states but k > n particles that cannot share the
same state, you cannot fit them all!

5 The Fock space

Now that we have the spaces for k identical particles, we might want to extend it to hold infinitely many!
But first, let’s first consider a space that allows for arbitrarily many particles without statistics. This can

be done by defining the Fock space (without statistics) F.H/ as the direct sum

F.H/ D
1M
kD0

˝
kH;

where the “0-th level” is ˝0H WD C. To be clear, this is the analytic direct sum, i.e. the vector space of
sequences .a0; a1; : : : /, with ak 2 ˝kH, such that

P1
kD0 kakk

2 < 1. We also might write the sequence
.a0; a1; : : : / as a sum

P1
kD0 ak , again with each ak 2 ˝kH. This is a direct sum, so the elements of

different number k do not interact with one another.
The inner product on F.H/ is defined as

hajbi WD

1X
kD0

hakjbki ;

thus forming the Hilbert space1 that we want.
In this Fock space, define the vacuum state, denoted by j0i or j�i, as

j0i D j0; 0; : : :i WD 1 2 ˝0H D C:

This represents a state with no particles at all. Do not confuse the ground state j0i with the zero-vector
0 2 H or the element 0 2 C!

Similarly, we can consider the boson and fermion fock spaces, FC.H/ and F�.H/, respectively, as

FC.H/ WD
1M
kD0

SkH

F�.H/ WD
1M
kD0

ƒkH:

1There are a few technical details and subtleties when the one-particle state spaces are infinite dimensional. In the good physicist
fashion, we will simply assume that everything behaves as in finite dimensions. Who likes analysis, anyway?
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Since this might be quite too abstract, let’s give examples of elements of each space. Suppose that H has an
infinite countable basis fj�nig1nD0 (these may be, for example, energy eigenstates for a good Hamiltonian,
like the harmonic oscillator or the infinite square potential). We take an infinite-dimensional space to avoid
the collapse of the fermionic spaces that we described above.

The simplest elements of these spaces are simply finite sums of elements of each component space. This
guarantees the sum of the squared norms to be convergent.

For a non-trivial element of F.H/ which is neither bosonic nor fermionic, consider

j‰i D

1X
nD0

1

2n
j�1 : : : �ni D j0i C

1

2
j�1i C

1

4
j�1�2i C : : :

Indeed, the n-th term of this (formal) sum is an D 2�nj�1 : : : �ni 2 ˝nH, and it satisfies

1X
nD0

kakk
2
D

1X
nD0

1

22n
h�1 : : : �kj�1 : : : �ki D

1X
kD0

1

22n
<1:

Now for a nontrivial bosonic element, we can simply consider

1X
nD0

1

2n
�Cj�1 : : : �ni D j0i C

1

2
j�1i C

1

4 � 2Š
.j�1�2i C j�2�1i/C

1

8 � 3Š
.j�1�2�3i C � � � C j�3�2�1i/C : : : :

Similarly, for a fermionic element,

1X
nD0

1

2n
��j�1 : : : �ni D j0i C

1

2
j�1i C

1

4 � 2Š
.j�1�2i � j�2�1i/C

1

8 � 3Š
.j�1�2�3i C � � � � j�3�2�1i/C : : : :

Note that these examples are not normalized. We may, however, normalize them since their norms are finite.
These examples might look contrived, but they are general elements of the total Fock spaces. However,

physicists use Fock spaces in terms of a specific basis that is induced by a basis of H. This induced basis is a
generalization (and completion) of the bases j2; 0i; j1; 1i; j0; 2i, etc., that we found above, and is sometimes
called the occupation number basis or occupation number representation. The occupation number basis
makes it easier to solve the counting problems that are needed for statistical mechanics, and we will discuss
it in depth in a future post.

6 In summary

We presented bosonization and fermionization operators that act on the spaces of k distinguishable particles
and output bosonic or fermionic states. We also saw that Pauli’s exclusion principle is general: fermionic
particles can never share the same state, and this means that if the dimension of the one-particle state space
is finite (say of dimension n), then the fermionic space of k > n particles is meaningless.

We also constructed (algebraically) a space that can represent states with an arbitrary number of particles,
in the bosonic, fermionic, and without statistics flavors.

What comes next is to describe how to work and do interesting stuff with the Fock spaces, and hopefully
this fun will take us all the way to the idea of a quantum field.
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