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Notation

These notes compile some general facts about connections on principal bundles, and their relation to
connections on vector bundles.
A few notes on notation: We are working in the context of a principal G-bundle P over a manifold

M. This we denote as G & P it M; where r : P — M is the projection map. The right action of G
onPisdenotedaso : PXG — P. Forany g € G, we denote right multiplication by g as gy i P— P
and for every p € P, we denote the orbitmapaso, : G — P.

Given a smooth function f : M — N between manifolds, we denote the tangent map at some
X €MasTyf : TeM — Tg(x)N. This is to explicitly show the functoriality of T.

1 Connections on principal bundles

1.1 Connections as horizontal distributions
Recall that a vector v € TpPis called vertical if
T,7(v) = 0.

We denote the subspace of vertical vectors by V,P C T, P. By definition, V,P is nothing more than the
kernel of T, 7, so we have a short exact sequence

Tpm
0 —> VP — T,P -5 T,(xM —> 0 .

*Please send corrections, suggestions, etc. to squinterodlr@gmail.com. Latest version on homotopico.com/notes .


mailto:squinterodlr@gmail.com
http://www.homotopico.com/assets/docs/notes/principal-connections.pdf

Since this is a sequence of vector spaces, it splits, and thus we have an isomorphism
T,P = V,P & T;,)M.

However, the splitting (and thus the isomorphism) is not canonical: it depends on a choice of a sub-
space H, C T,P that is complementary to VP, and an isomorphism Tr(,)M — H,. We call any
complementary space to VP a horizontal space at p, such that:

T,P = V,P @ H,,.
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Figure 1: A choice of a horizontal space Hj, at T,,P. There are many such choices (in dotted lines).

Once we have chosen a single horizontal subspace H, p C TpyPat p, wecan find horizontal subspaces
for all points in the same fiber of p. This follows since the action of G on P, which we denote og(p) =
p - & is a fiber-preserving diffeomorphism, and thus T},0; is an isomorphism of tangent spaces that
preserves the vertical subspace. This suggests that T,04(H,) is a horizontal subspace at p - g. Indeed,

noting that

T

we see that T,m(V,P) C V,, o P. Similarly, if u € V4P, we can write

g7 © Tpog = Ty(7w 0 o) = T,m(v),

u = Tpoy(Tp.g05-1 (W) = Ty0,(ih),
where by the same argument above @l = T),.g04-1(u) € V, P is vertical. Therefore, we obtain that
Vp.gP = Tpag(,P).
Furthermore, since Tpog @ TP = TpePisan isomorphism, we obtain that
T, gP = T,05(T,P) = T,0,(V,P) ® T,05(H,) = VP @ T,op(H,),
And so we have proved the following:

Lemma 1.1 (Translation of horizontal subspaces).
IfH, C T,P is horizontal at p, then for all g € G, T,05(Hp) is horizontal at p - g.

So far we have been working at a single point p € P. We can now consider a smooth choice of
horizontal spaces above each element of P:

Definition 1.2 ((Principal) Connection).

A connection o7 Ehresmann connection on P is a distribution H on P such that for all p € P,
Hy, C TP is a horizontal subspace. We say that a connection H is principal if it is compatible
with the group action in the sense that for all g € G and all p € P,

T,04(Hp) = Hp.g-



The notion of connection is independent of the group action on the total space P, and indeed it ap-
plies to general fiber bundles. The condition for a connection to be principal states that our choice of
horizontal subspaces along a single fiber is consistent with the “translation” lemma 1.1.

We think of a connection H as a preferred way of relating “neighboring” fibers of the bundle. Once
we have p € P, we might think that the preferred way of moving to another fiber is along a “direction”
(i.e. tangent vector) in the horizontal space Hp,. This gives us alittle bit of intuition and (sort of ) justifies
(kind of) the name connection. In practice, however, working with distributions might be cumbersome.
Fortunately for us, there are other (equivalent) presentations of connections.

1.2 Connections as 1-forms

Let g be the Lie algebra of G. Recall that for all p € P, we have the infinitesimal action of g on T, P,
ap : g — T,Pgivenas

. d
a,(X) 1= r{ p - exp(tX).

Writing o, : G — P as 0,(g) = p - g we see that the infinitesimal action is simply the differential of
Op:

a,(X) = T,0,(X).
This infinitesimal action induces, for each X € g, a vector field X # called the fundamental vector
field associated to X given by

X; 1= ap(X).

We have that g}, is a diffeomorphism onto the fiber containing p, and thus a, = T,0}, induces a
a,
p
linear isomorphism g = V,P.
Suppose that we have a principal connection H on P. Then in particular, we have a subspace H, C
TpP such that T,P = V,P @ Hp, and so we can construct amap @, : T,P — gas

wp(0” + ") = ' (VY),
where vV € WP andv? € H,,. By construction, we have that
wp(apcx))::}(

forallX € g. We can also see how W) compares to Wp.g, since we know that our horizontal distribution
behaves nicely along the fibers of the action.
For this, first note that forallg € G,

Tyog(ap(X)) = <

dr L:o %(p - exp(1X))

= T o D exp(tX)g
d
=5 (@8- (g7 exp(tX)g).
t=0

Now we ask ourselves, do we know what the tangent vector of g_1 exp(tX)g is? Yes, yes we do:

g lexp(tX)g = %

KT i—o ‘t:o Con)g_l(exp(tX)) = Adg1(X),

where we have written' Conjg(h) =ghg !l and Adg = T, Conjg. Then we have

T,05(ap(X) = &

| (9 (7 exp(t0g) = (A ().

With this, we can see that for v € TP, which we write as v = vV + v witho” = a,(X) for some
X€Eqg:

(g5 )p(V” +0H) = wp o (T, 05 (V" )+ T,05(VH)) = wp.g(Tz04(ap(X))) = Adg-1(X) = (Adg-1 owp)(v),

"https://xkcd.com/927/


https://xkcd.com/927/

and so we conclude that
(ogw) = Adg-1 0.

Then we have proved, modulo the small detail of smoothness*, the following:

Proposition 1.3 (1-form induced by principal connection).
Let H be a principal connection on G < P — M. Then there exists a (unigue) §-valued 1-form
w € QY(P, g), such that for allp € P, g € G and X € ¢:

1. wp(apX)) =X,

2. 0gw = Adg-1 ow, and

3. ker(w,) = H,.

We call any g-valued 1-form satisfying these properties a connection 1-form:

Definition 1.4 (Connection 1-form).
A connection 1-form on P is a g-valued 1-form w € Q'(P, §) such that for allp € P, g € G
and X € g:

1. wp(ap(X)) = X, and

* —
2. Ogw = Adg—l ow.

The converse to proposition 1.3 is also true:

Proposition 1.s.
Principal connection induced by connection 1-form Let w € QY (P, @) be a connection 1-form.
Then the distribution H defined pointwise as

H,, = ker(wp) C T,P

is a principal connection on P.

Proof. — First, let’s see thatindeed Hy, = ker(wp,) is horizontal. If v € ker(wp) NV, P, thenv = ap(X)
for some X € g, so that
0= COp(U) = wp(ap(X)) =X,

and thus v = 0. Therefore ker(w,) N V,P = {0}. Now for an arbitrary v € T,,P, set

oY = ay(w,(v).
Then we have that Tpn'(vV) = 0, since it is in the image of ap, and thus vWoe W,P. Finally, setting

vH = v — 0¥, we have

C’)p(UH) = COp(U) - wp(ap(wp(v))) = wp(v) - COp(U) =0,

and so v € ker wp = Hp. We have then shown that v = V¥ + vH, withv” € WP and v € H,,
and so

T,P = V;P & H,,.
Thus H), is a horizontal subspace. Now to see that H is principal, note that

wp.g(Tpog(v)) = Adg-1(wp(V)).

Since both T,,0, and Adg-1 are isomorphisms, we have that v € ker wp, if and only if T,0,(v) €
ker Wp.g> and thus

Tpog(Hp) = Hp.g.
Finally, smoothness follows from the fact that @ is 2 smooth form.

From now on, if @ is a connection 1-form, we will simply call it a connection. In physics lingo, connec-
tions are often called gange fields or gauge potentials.

*We can handwave it away by saying that it follows from the smoothness of the distribution H.



Example 1.6 (Maurer-Cartan connection).
Let G be a Lie group, which we interpret as a principal G-bundle over a one-point space G <

¢S5 {x}. Foreach g € G, we have a way to map TyG to g = T,G, simply by pushing vectors
via one of the multiplications; for instance

TyLe : T,G — ¢ = T,G.

We then define the Maurer-Cartan form of G, denoted by ® € QY(G, g), as
O = TyLg.

The heading of the example spoiled the surprise: © is a connection on G. Indeed, for X € g =
T, G, we have that

d
ag(X) = & gCXP(tX) = TeLg(X)a
t=0

so that
04(ag(X)) = Ty(Lg-1 (T, Ly(X)) = Ty(Lg-1 0 Lg)(X) = X.

Now forany h € G, we have
(05 ®)n(X) = Opg(To5(X)) = TpgLg-1p-1Tpog(X) = Tp(Lg-1p-1 0 0 )(X).
But then, we see that
(Lg-1p-100)(x) =g~ 'h~'xg = (Conjy_y oLp-1)(X),
such that the differential at k1 is
Tp(Lg-1p-100g) = Th(Conjg_l oLy1) =T, Conjg_1 TpLp-1 = Adg-1 00y,

and so, indeed

(050) = Adg1 00.

With the Maurer-Cartan form, we can construct connections on any principal bundle.

Example 1.7 (Trivial connection on a trivial bundle).

Let P = M X G be a trivial bundle, and pr, : M XG — G be the projection onto G. If O is the
Maurer-Cartan form of G, then pr;® is a connection on M X G, and its horizontal distribution
is precisely given by Hy gy 1= T,M @ 0 C Ty oy(M X G).

1.3 Local expressions, or, why physicists did nothing wrong
Consider a trivializing cover {(q’lp')}je] of the bundle 7 : P — M, where we write each ¥; :
77X (U;) = Uy X G as

11Jl(p) = (7T(P): ¢l(p))’

with; : Up = G. We know that each trivialization ¥; has an associated section s; : U; = P, given
by
-1
si(x) = ¥ (x, )

forall x € Uj. These sections are called local gauges in the physics literature.
Note that for all x € U; and p € 77 1(x),

Wi(si(x) - %i(p)) = (x, i (s;())i(p)) = (x, ¥i(p)) = ¥i(p),

and therefore we have that
p = si(x) - Pi(p).

Now if x € Uj; = U; N U, for all elements p € 7~1(x), we obtain for both sections

si(x) - %i(p) = p = 5;(x) - P;(p),



and thus
5(x) = 5;(x) - Yi(p)(p) 7.
But now, since the trivializations are G-equivariant, P;(p - g) = ¥;(p)g, the product 3;(p)y;( p)lis

G-invariant, and is precisely the transition function g;; : Uj; — G:

£ij(%) = hi(p)g(p) "

We then conclude:

Sj(x) = 5;(x) - gij(x)-

See figure 2.

Figure 2: The transition functions g;; relate the sections s;, s induced by the trivializations.

Now let w € Q(P, g) be a connection. For each Uj, the pullback of @ by s; is again a g-valued
1-form on U;. We denote it by
A = S;kC()
and call it the local gauge potential (in the gauge s;). How do different local gauges relate to one

another?

Proposition 1.8 (Transformation of local potentials).

Let @ be a connection on G < P — M, and {Uy};c; a trivializing cover with induced sections
si © Uy — P, and transition maps g;j © UyNU — G. Let A; = sjw be the local gauge
potentials. Then for all x € Uj; = U; N U,

(-Aj)x = Adgij(x)—l O(Ai)x + (g?jG)xs (I)

where © is the Maurer-Cartan _form of example 1.6.
We write this compactly as
Aj = Adgi_jl ﬂi + g;k‘]@

Proof. — Let’s try to brute-force it first, and see what else we need. we have that
- * —
(Ajx = (S] W)y = Ws;(x) © I

so we need to find the expression for Ts;, preferably in terms of s;. To do so,leto : P X G — P be
the action, i.e. (p,g) = p - g Then forall x € Uj; we can write 5;(x) as

Sj(x) = 5;(x) - gij(x) = U(Si(x),gij(x)) =(oo (Si,gij))(x),
where we have (s, g;j) : U — P X M is defined in the natural way. This tells us that
Tij = Tx(a ° (Si’ gij)) = T(sj(x),gij(x))a ° Tx(sj’gij) = T(sj(x),gij(x))a ° (szj’ Txgij)-

Now we need to find the expression for T, 0. We proceed carefully, in parts, noting that T, ¢ (P x
G) T,P & T;G. Letu € TP, and y an integral curve of u. Then we have that

d

Togow0) = 5| o00.0= 3 10-g= 3 500 =Hew.



On the other hand, let § € TzG. Then we have that ©g(§) := X € g = T, G is the (unique) element
of the Lie algebra that satisfies

dt

o gexp(tX) = T,Ly(X) = g,

sothatt - g exp(t 0,4(¢ )) is an integral curve of §. Therefore

a(p, gexp(t@4(£)))

d
Tip.)0(0,8) = ELO

d
= ELO p - gexp(t04(£))

d
| 09 en(t0,®)
= ap~g(®g(§))-

We put these two together, and obtain
T(p,g)o-(u; 5) = Tpag(u) + ap-g((ag(g))-
Substituting in Ts;, and evaluating at some v € T, U;j;,
Tij(U) = nsi(x),gij(x))U(Tx%(U)a Txgij(v)) = Tsi(x)agij(x)(TxSi(U)) + asi(x)Agij(x)(@gij(x)(Txgij(U)))-
= si(x)o'gij(x)(szi(v)) + asj(x)((g?je))x(v))-

Now we evaluate Wg;(x) On Tysj(v). By definition, we have

@s;(0) (@30 ((870)x (1)) = (870)x (V).

We have to do a little bit more work for the other term. We will simply write s;, g; ;, 5; for 5;(x), etc., to
avoid the clutter. Then we have

w0y, (T () = g, (T, 0, (Tisi (W)
= @y, (T O (Tesi (1))
= (03, @)s, (Tusi()
= Adg (@5, (Tesi())
= Adg ((57)<(w)
= (Adg 1 © (ADW).

Placing these two last results together, we obtain the result.

In the previous proof we calculated the differential of the group action o : P X G — P. We will use it
a bit more so let’s collect it in a lemma.

Lemma 1.9 (Differential of the group action).
Let P — M be a principal G-bundle and denote by o : P X G — P the right action. Its
differential is given by

T(p,g)o'(u9 g) = Tpag(u) + ap-g(G)g(g))!

for allu € T,P and & € T,G. Here, 04 : P — Pis right multiplication by g, a, i the
infinitesimal action on p, and © is the Maurer-Cartan form.

If the Lie group G is a matrix Lie group, then this result takes a particularly simple form. In a matrix
Lie group, the adjoint representation is simply

Adg(X) = gxg'.



The pullback of the Maurer-Cartan form also has a simple form. Let X € T, M be a tangent vector
with integral curve y. Thenif g : U € M — G is a smooth map,

(g*g)x(X) = ®g(x)(Txg(X))
= TgoLg(o1 Tx8(X)
= Tx(Lg(x)-1 0 g)(X)

- 5. g07e0@)

ORI

t=0

= g() ™ (dg)x(X).
Therefore, the gauge transformation of the gauge potential for a matrix Lie group is
Aj = gii Aigij + g7 dgij -

This proposition, in physics, is often called gauge transformation of a potential. In physics we mostly
work with the local potentials, not with the global connection in the total space P, and we define a gauge
potential as some object that under a certain set of (local) transformations, transforms as in equation (1).
Indeed, the following result tells us that this information is sufficient to reconstruct the global object.
The proofis a bit tedious and not particularly enlightening (we did a lot of the work in previous propo-
sition).

Proposition 1.10 (Physicists did nothing wrong).

Let G < P — M be a principal G-bundle, and {(U;, ¥})};c; a trivializing cover with induced
sections s; © U; — P. Suppose that for each Uy, there is a g-valued 1-form A; € QN(U, g), such
that for all x € U; N U,

(-’qj)x = Adgij(x)—l o (Apx + g?j®x'
Then there exists a unique connection @ € Q(P, g) such that for all i € J,

* oy —

1.4 Horizontal lifts, parallel transport and holonomy

Once we have a connection, we now have a preferred way of liffing vectors from TM to TP. Recall that
avector Y € T,Pisalift of X € Ty, M if T,7(Y) = X. In absence of a connection, there are many
different choices of lifts of a vector, and any two choices differ by a vertical vector. That s, if Y, Y” are
lifts of X, then Y — Y is vertical. Once we have a connection, we can define the horizontal lift (with
respect to a connection H) of X € T, M as the horizontal component of any lift of X. This definition
is, of course, independent of the choice of lift, since any two differ by a vertical vector, whose horizontal
component vanishes. Denoting the horizontal component of a vector by YH  we have then

Y2 = +(Y -Y)H =(Y")H.
Similarly, we can lift vector fields by lifting them in a pointwise fashion.

Definition 1.x1 (Horizontal lift of vector fields).

Let X € X(M) be a vecror field and H C TP an Ebresmann connection on P. We define the
horizontal lift of X as the vector field Y € X(P), which satisfies .Y = X and Y, € Hy, for
allp € P.

If H is a principal connection, then the horizontal lift Y of a vector field X is G-invariant, since T,04(Y,)
is a horizontal vector that projects to Xz (p). Therefore we have that

0. Y =Y.

We also expect a horizontal lift to commute with (some) vertical fields, since, in a sketchy intuitive sense,
we define these two directions as independent. Actually, this is true of any G-invariant field.



Lemma 1.12 (G-invariant fields commute with fundamental vector fields).
Let X* € X(P) be the fundamental vecror field associated t0 X € g, and ler Y € X(P) be a
G-invariant field, i.e. Rg,)Y =Y. Then [X,Y] =

Proof. — Let @, be the flow of X ¥ Icis straightforward to check that

®,(p) = p - exp(tX) = Rg,(p),
where we denote gy = exp(tX). Then

d

d
[X.Y], = T, () P-1 (Yo, (p) = dtl,—o TogRg1(Ypg,) = dtl—o Y, =0.

d
dtli=o

Now suppose that we have a curve y @ [0,1] — M. At each point over the curve, we have a vector
y(t) € T, M, which we can lift we can lift to the fiber above (). So if we choose a starting point
Po € ' (¥(0)), we can find an integral curve along all these lifted vectors on the fibers over the curve
y. In the end we obtain a curve 7 : [0,1] = P which satisfies 7 0 7 = y, #(0) = pg, and j(t) € H, g
for all . We call it a horizontal lift of y, and it is unique:

Proposition 1.13 (Existence and uniqueness of horizontal lifts of curves).
Ler w be a connection on the G-bundle P — M, and 'y : [0,1] = M a piecewise smooth curve.
Given a point p € w1 (y(0)), there exists a unique curve 7 : [0,1] — P, called the horizontal

lift of y, satisfying
L Jialiftofy: moy =y.
2.  is horizontal: ¥(t) € Hy(y) for all t € [0,1].
3. 7(0) =

Proof. — There’s two ways to prove this: The first way is in the spirit of the discussion above. We have
avector field X on the bundle Ply(10,11)," wherefor p € 71 (y(1)), X, is the horizontal lift of 7(t) to p.
Then 7 is the integral curve of X starting at the prescribed py € 7 1()/(0)) Technically these integral
curves only exist locally but since [0, 1] is compact we can glue a finite number of them together and
be done.

The second way follows [Birii, Lemma 2.6.1], where we look at alocal problem in terms of sections
and an ODE. We’ll go through it because y’all know I love me some local descriptions of things.

Suppose that the image y([0, 1]) is contained in a single open set U that trivializes the bundle. In
general the image is compact, so it will be contained in a union of finitely many of these. So there is an
associated section s : U — P. Any lift 7 will be of the form

7(©) = s(y()) - g(1),

for some unique map g[0,1] — G. The condition for 7 to be a horizontal lift is that 7(t) € ker Wy (t)
forall ¢.
First, we need to see what 7 is. For simplicity, write p(t) := s(y(t)).

70 = Sp(0)-50)

= Lo(pr) 5(0)
= Ttp() 8009 (B(0), (1))
= Tp(1)Tg(oy(P(D) + Ap(e).g(1) (Og(e) (§(1))-
Here we used the differential of ¢ from lemma 1.9. Now we apply wg ;). Recall that cop(ap(g)) =¢
by definition, so
W0y (F(0) = @p(e.g) (T Ty (BP0 + Ape) (1) @1y (1))
= Wp(1)-g(t) (Tp(ey Tg(ey (B(1))) + O (8(1))
= (Gg1@)p(e)(P() + Og(1) (&(1))

= Adg(s)-1 Wpr)(P(2)) + Og(1)(&(1)).
3We could talk of the pullback bundle y*P — [0, 1] to be even more technical.




Now recall that Ady is the derivative at e of the conjugation map Conjg(h) = ghg™1, which is precisely
Lg oRg1. Also recall that Og = TyLg-1. These two things, put together give us

Wy 7)) = To(Lg(ry1 © Re())@p(e)(D()) + Ty(yLg(ey-1(&(1))
= Tyt)Lg(ey-1 (TeRg(ty@wp(ey (D()) + &(1)) -

Since 7 is horizontal, then this must be precisely zero. But since Ty(s)Lg(s)-1 is an isomorphism (because
left multiplication is a diffeomorphism), then the condition for 7 to be a horizontal lift is

TeRg(tywp(ry (P(1)) + &(1) = 0.
Finally, let’s rewrite p(t) = (s o ¥)(¢). Then p(t) = T,,(;)s(y(£)), and this becomes

TeRg(1)(5* @)y ey (7(1)) + &(t) = 0.

Thisisa first order ordinary differential equation for g(t), with a given initial condition, so it determines

g(t) uniquely.

Note that in terms of the local potential A = s*w, the local condition for ¥(t) to be a horizontal lift is
TeRg(ty Ay (7(1) + 8(t) = 0.

Even more, if G is a matrix Lie group, then right multiplication is a linear map so this becomes

&) = Ay (7(0))g(®).

If the exponential map is surjective, then g(t) = exp(£(t)), and this equation becomes

() = —A, G,

which has a solution
t
(1) = £(0) - / Aoy (D)) dr = £(0) — / A.
0 Y

Givenacurvey @ [0,1] — M, if we write X = ¥(0) and x; = y(1), then we have a map
PT, : 77 (xg) = 7 1(xy), called parallel transport along ¥, where for p € 7~1(xy), its image
PT,(p) is the endpoint of the horizontal lift of y with initial value p.

Note that if 7 is the horizontal lift starting at p, then forany g € G, 7 - g is a horizontal lift starting
at p - g This tells us that

PTy(p : g) = PTy(p) - 8-

In particular, since the action of G is transitive on the fibers of the bundle, then PT is necessarily bijective.
Furthermore, if we choose a “reference point” p € 7~1(x,), we have an isomorphism 77 1(x,) = G
by p - g + g and similarly for 771(x;). Then under these isomorphisms, parallel transport PT, :
771(xg) = 7w~ 1(xy) is a “group isomorphism”.

More specifically, suppose that ¥ is a loop based at xy. Then parallel transport is an isomorphism
PT, : 7~ (xo) = 7 1(xp), and it determines a unique map g 7 1(xy) = G which satisfies

PT,(p) 1= p- &/(p).
On one hand, we have forany h € G,
PT,(p-g)=(p-h)-g(p-h),

but on the other hand
PT,(p-8 =PT,(p)-h,

which implies that the map g, satisfies

g/ (p-h) = h~'g(p)h.

This means that the loop y determines a conjugation class of G, as

¥ = &(m 1 xo) = {h'g,(p)h : h € G}.
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2 Curvature
2.1 The curvature 2-form and structure equation

LetG & P 5 Mbea principal G-bundle, and g be the Lie algebra of G. For any g-valued k-form
w € QK(P,g), we define dw € QK*1(P, g) as follows: choose a basis {e], ..., ¢,,} of g. Then we can

write

m

W= Z wle,,

a=1

where each w® € Q¥(P). Then we define
m
dw := Z dawe,.
a=1

This definition is independent of the choice of basis of g, as can be readily checked.
In order to define curvature, we also need another definition.

Definition 2.1 (Bracket of valued forms).
Lera € QK(P, g) and B € QL(P, g). We define a (k + D)-form [a, ] € Qk+U(P, g) in terms
of a basis {ey, ..., e} of § as

[, 8] = Y a® A BPlea, €]
a,b

This definition is independent of the choice of basis (and in some references it is written as & A 3,
[OC A 6], ora /\[,] ﬁ)

In the case where &, 8 € Q(P, g), the definition becomes

[a, BIX, V) = g(aa A BPYX, Y)[eq, ep]
= g(aa(X)ﬁb<Y> — (V)P (X))l eqs 5]
= Z’k})[aa(X)ea,ﬁb(Y)eb] ~ [a(Veq, B2 (X)es]
= ([Z(X)’ﬁ(y)] — [a(Y), BEO]:

In general, we have a way to evaluate the bracket of forms:

Lemma 2.2 (Evaluation of bracket).
Let a € Q(P, g) and B € Q/(P,g). Then for vectors Xy, ..., Xi4 j:

[a, BI(Xy, o, Xigj) = D7 sgn(@)[aXo(1ys - Xo(i))s BXo(is1) - Xois jy)]-

TH
AV

Proof. — The proofis a straightforward evaluation and application of the definition of the wedge prod-
uct.

Now we define the curvature 2-form of a connection.

Definition 2.3 (Curvature 2-form).
Let @ be a connection on G < P — M. The curvature of @ is a §-valued 2-form Q € Q3(P, g)
defined as

Q:dw+%[a),a)]. (2)

Equation (2) is called the Cartan structure equation.

Now let’s do an example that comes with a bit of motivation.
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Example 2.4 (Curvature of the Maurer-Cartan form).
Recall that for a Lie group G (which we see as a G-bundle over a one-point space), we have a
canonical connection ® on G, called the Maurer-Cartan form (see example 1.6), given pointwise
as

04 = Ty(Lg-1).

The Maurer-Cartan form is also left-invariant,
(L*gG))h = Ogh o Tth = ghL(gh)—l Tth = Th(L(gh)_l OLg) = Tth—l = @h,

and so it is uniquely defined by its value at the identity e € G. Now fix a basis {e;, ..., e,,,} of @,
so that the Maurer-Cartan form can be written as

0 =) 0%,
a

where each component % € Q!(G) is a usual 1-form. If we write &, as the left-invariant field
generated by eg;

ga(g) ‘= TeLg(ea)’

then at each point g € G, the set {£;(g), ..., §,(g)} are a frame for Ty G, and furthermore, we
have that

®g(§a(g)) = €q.

But on the other hand, we have

Gg(ga(g)) = Z G)g(fa(g))ea,

b

which implies that for all g, @g(ﬁa(g)) = 85 and so {@1, s @m} forms a coframe of Tg'G that
is dual to {&1, ..., £, }. Now we have that

dO%(€p, &) = £p(O%(€))—Ec(0%(€p))— O ([, &c]) = —Oc ([ ec]) = —[ep. ec]* = —C,

where [ep, e.]% is the a-th component of [ep, e, ], which is precisely the definition of the struc-
ture coefficients C... Now since the &, vectors form a frame of TG, whose dual coframe is
precisely the @% forms, this tells us that

1
do® = —> P ALINCIS
b,c

and thus,

1 1 1
dO = ) de%, = -5 > CE.Ob A O, = _Engb A ©°[ep,e.] = —5[0,0].
a ,C

a,b,c

Therefore, conclude that
Q=do+3[0,0]=0.

We now see one of the most (if not the most) important properties of the curvature 2-form:

Proposition 2.5 (Curvature is basic).
Let w be a connection on G < P — M and Q its curvature. Then Q € Q%M(P, Q), that is,

1. If X is a vertical field, then 1xQ = 0, i.e. Q is horizontal; and

2. Forallg € G, Jg Q= Adg—l 0Q, i.e. Q is psendotensorial® of type Ad.

“this is sometimes called G-invariance, or G-equivariance, but let’s avoid that discussion.
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Proof. — First, let’s see that Q is pseudotensorial of type Ad:

1 1 1
03 Q = ojdw + 50’5 [0, 0] = dojw + E[agw, ggw] = d(Adg-1 ow) + E[Adg—l ow, Adg-1 ow].

The occurrences of Adg-1 in this previous expression may seem like there’s some care required with d
and the commutator, but by definition, Adg-1 acts on the element of g that @ outputs. We can see
this more clearly when we choose a basis {ey, ..., €,,} of ¢ and write @ = }; w%e,. When we write
Adg-1 0w, this actually stands for

Adg-1 0w = Z w® Ad,-1(ey),
a
so that the terms in the previous expression are

d(Adg—l °Z coaea) = Z dw® Adg-1(eq) = Adg-1 odw.
a a

Now we consider the case of the bracket. Since Ad, = T,C, is the differential of a diffeomorphism, it
g e-g
is a pushworward evaluated at e and thus it distributes into the Lie bracket of vector fields

AdglX,. Y,] = (Con, [X., YD),
= [Conj,, X, Conj,, Y]
= [Adg(X), Adg(Ye)]-
Then we have
(630) = Adgr1 (doo + 3[,0]) = Adg o0

We now need to show that Q is horizontal. Since we have a connection, we can decompose any vector
v € TpPina vertical and horizontal part, v = 0V + 0" . Then the action on Q on a pairu,v € T,Pis

Q,(u,0) = Q,w” +uf v +v) = Q" v") + Q" , v+ Q,wH, v") + Q, M, vH),

and thus, it suffices to consider two cases: when both 1 and v are vertical, or when u is vertical and v is
horizontal.
Let’s begin with with the case where both u and v are vertical, so thatu = a,(X) and v = ap(Y)

for some X, Y € g (namely X = wp(u) and Y = wp,(v)). If we write X*, Y?* for the fundamental
vector fields associated to X, Y, given by Xg = a,(X) = 0p.(X) (and same for Y), we have then that

0,(1,0) = desp(at,0) + 5[, ] (w,0)
= u(w(Y")) — v(X*)) — a([u, v]) + [w(), w(V)].
But w(X*) = X and w(Y¥) = Y are constant, so
Q,(u,v) = —a([u,v]) + [X, Y.
Finally, we see that
[u,v] = [X*, Y*], = [05.X, 0. Y ]p = 0. ([X, Y1) = a,([X, YD),

sow([u,v]) = [X, Y], and thus
Qp(u, v) =0.
Now let’s consider the case where u is vertical and v is horizontal. Again, let X = a)p(u) € g,and

X* be the fundamental vector field associated to X, so that Xg = u; and let v be a horizontal field such
that v, =v. We then have

Qp(u,v) = dw,(u,v) + %[a), w](u, v)
= u(@(®)) — v(@X*) = w([u, v]) + [ww), ©(v)]

= —a([u, v]).
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Now it suffices to show that [u, U] is horizontal if U is horizontal and u is vertical. First, we have that
the flow of the fundamental vector field X* is given by

@,(p) = p - exp(tX),
as can be readily checked. Then

d d
ol = | @M= 3| Tom®-iCe)

If we write g; = exp(£X), then itis clear that @;(p) = gg,(p), so

d d
[uv] = + |t=0 To, ()21 (v, (p) = |t=0 Tpg:9g;t (Vp.g,)-
However, we know that (0, )(v) is horizontal for all g if v is horizontal, and thus we obtain that
Tp-gzo'gt_l(vp-gz) €H, forall t,

and so [, v] is horizontal as well. Therefore w([u, v]) = 0, and our result is proved.

Since Q is horizontal, its values are uniquely determined by the horizontal components of the vectors
thatitis evaluated at. The following corollary is often given as the definition of the curvature form:

Corollary 2.6.
Let w be a connection and Q its curvature. Then for allu,v € TP:

Q(u, v) = dw(uf, vH),

where ut, VH are the horizontal components of U, v, determined by w.

2.2 Local expressions (Curvature Edition)

Again, let’s see what the curvature looks like once we take trivializations. Let {Uj};; be a trivializing
cover with local gauges s; : U; — P, and with gauge transformations g;; : U; N U; — G, satistying
S = 8; - 8ij. Letw € Q(P, ) be a connection on P with curvature Q € Q*(P,g). For each local
gauge, define the gauge field strengths F; € Q*(U;, g) as

F =570

From the Cartan structure equation (equation (2)), we immediately obtain
1
Fi = dAi + 5[ A A,

where A; = s are the local gauge potentials.
Again, how do these relate to one another? Let X, Y € T, M be tangent vectors. Then, since the
curvature £ is a horizontal form,

?},x(X; Y) = Qsj(x)(Tij(X)’ Tij(Y)) = Qsj(x)(Tij(X)Ha szj(Y)H)-
In the proof of proposition 1.8, we showed that the differential Tysjis
szj(X) = Tsi(x)o'gij(x)(szi(X)) + asj(x)((g?jg)x(x))-

Note that the second term in this expression is a vertical vector, since it is in the image of the infinitesimal
Lie group action. Therefore,

10 ¥) = Oy (T 9900 Tt GOV, T 99 0 (Tesi (V)
= s30T 10 (TSt OO0 T ) gy (T (X))
- (Ogij(x)ﬂ)si(x)(szi(X)’ Tyesi(Y))
= Adg,; (01 Q0 (T8 (X), Tisi(Y)))
= Adg, 01 (T DX, 1)
= Adg; ()1 (Fix (X, Y)).

We have proved the following:
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Proposition 2.7 (Transformatio%n of local field strenghts).

Let w be a connection on G < P — M with curvature Q, and {U;};; a trivializing cover with
induced sections s; . U; — P and transition maps g;; - UyNU — G. Let F; = s7Q be the
local gauge field strenghts. Then for all x € Uj; = Uy N U,

‘(}}’x = Adgij(x)_l oFix- (3)
We write this compactly as
%= Adgi—]; F.

2.3 The exterior covariant derivative

From corollary 2.6, we see that the curvature £ can be defined as the horizontal component of dew. We
can extend this notion, and define the exterior covariant derivative d* : QK(P,g) — Q*+1(P, g)
as the horizontal component of the usual de Rham differential:

d?a(Xy, s K1) = daX{, .., X2 ).
With this definition, we can simply write
Q =d%w.

Clearly, by definition, d®« is horizontal for any form o € QK(P, g). We also see that d%a is pseu-
dotensorial of type Ad if @ also is. The idea is that g preserves horizontality and the pullback commutes
with d, so in general pulling back by o, should behave reasonable well. Indeed, let a € Qk(P, g) be

pseudotensorial of type Ad. Then
(Ugdwa)p(Xl’ ’Xk+1) = (dwa)p-g(o'g*Xl’ ) o'g>rs)(k+1)

= dap~g((0g*X1)Ha ) (O-g*Xk+1)H)
= dap-g(o'g*(X{{)y seey O’g*(X]I(_il))
= (Ugda)p(XH, ,Xg_l)
= d(ogoc)p &, xED
= Adg-1 dap(X{T, ., X
= Adg—l d“’O(p(Xl, ,Xk+1).

He have then shown:

Lemma 2.8 (Exterior covariant derivative preserves basicness).
Ifa € Q,,(P,g), then d%a € QKF(P, g).

bas

This result suggests that d* is particularly well-behaved on basic forms.

Proposition 2.9 (Expression for exterior covariant derivative on basic forms).
Let o € QF (P, g) be a basic form. Then

d“a = da + [w, a].

Proof. — Let’s consider the right-hand side. Let Xy, ..., Xj. be vectors on T, P. If all of them are hori-
zontal, then the term [w, a] vanishes on them because, by definition, @ vanishes on horizontal vectors,
and we end up with the definition of the exterior covariant derivative. Recalling the coordinate-free
expression for the exterior differential

k
da(Xg, ... Xi) = Y (=X (a(Xos e, K > Xi))
j=0

+ 2 (=D a([X:, X1, Xos s i oo s Ko oe2 X,

i<j
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we see that the whole thing vanishes whenever there is more than 1 vertical vector, since we will always
end up evaluating & in one of them. Similarly, we can see thatin the evaluation of the bracket (following
lemma2.2),

[0, 1C - X) = 75 Y N0 AKX,

" 0€GK

if there is more than one vertical vector, we will always evaluate a in one of them, so everything vanishes.
Then, since d® (@) is horizontal, we trivially obtain the result.

The only non-trivial case is the one where we evaluate in exactly one vertical vector. Without loss
of generality, suppose Xj is vertical and X7, ..., X}, are horizontal. We still have that

dwcf(Xo, ,Xk) = 0,

so we need to show that
da(Xg, .., Xi) = —[w, a](Xp» ... » Xi).

On the right-hand side, we see that the evaluation of [w, a] reduces to the sum of the permutations
where we evaluate w on the vertical vector X, that is,

[CU, a](XOs 7Xk) = % Z Sgn(a)[w(Xa(O))’ a(XO'(I)s ’XO'(k))]

T o€k
a(0)=0

Z% Y, sgn()[w(Xo), a(Xor(1)s > Xor (k)]

o’ ey

z% Y, sgn(0")2[w(Xo), Xy, -, Xi)]

fo'egy

= [w(Xo), a(Xq, ..., Xi)]-

Here we used the fact that a permutation that fixes 0 can be written as 0(0) = 0;0(i) = o’(i) with
o' € &y, and these satisfy sgn(o”) = sgn(c). We have also used the fact that « is antisymmetric.

Now we want to evaluate da, and for such we will use the long coordinate-free expression of the
exterior derivative. First, letting § = @, (X)) € g, we can extend X, to a vertical vector field (which
we denote with the same symbol), as Xo(p) = a,(§); i.e. to the fundamental vector field associated to
&. Second, we can also extend the vectors X7, ..., Xj, to horizontal vector fields that are furthermore G-
invariant. To do so, we extend T, w(Xj) € Ty(p)M toavector field on M, and consider its horizontal lift
(see section 1.4), which we denote with the same symbol Xj. With this construction, since horizontal
lifts are G-invariant and G-invariant fields commute with fundamental vector fields (lemma 1.12), we
have that

a([Xi, X1, Xos s Xy s X e, Xp) = 0.

This follows for i = 0, since we evaluate on the bracket of a fundamental vector field and a G-invariant
field, which is vanishing. When i > 0, we are evaluating o directly on a vertical field, so everything
vanishes as well. Then we need only consider

k
daXg, o» Xie) = Y (=1IX(@(Xos v s K o, Xp)) = Xo(a(Xy, ., Xi)).
Jj=0

The only term in the sum that does not immediately vanish is the one where we don’t evaluate & on
Xo. Now we evaluate at a point p. An integral curve of Xy at pist — p - exp(t§), and we write
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gt = exp(tg)’ SO

daty (Ko -, Xi) = Xo(P)(@(Xy, -, Xi0)
d

= @ty Up.g, X1 (D - 81)s s Xic(D - 81))
= % —o Up.g,(TpTg, (X1(D))s ., Tyog, (Xic(P)))
= % o (0g,0p(X1 () ... Xk (D))

= % o Adyg-1 ap(X1(p), -, Xi(P))

= ad(=E)(@p (X2 (P)s . X (D))
= _[§7 Oﬂp(Xl(p)a o 7Xk(p))]
= —[CU(XO)7 ap(Xl(p)’ ’Xk(p))]-

A corollary of this expression is that d* is not nilpotent. This means that we cannot (immediately)
construct a cohomology theory based on basic forms and the exterior covariant derivative!

Corollary 2.10 (Exterior covariant derivative is not nilpotent).
Letp € Q) (P,g). Then
(d® 0 d)p = [Q,¢].

Proof. — We have
d4(d%9) = (&) + [, 4]
= d(dg + [@,¢]) + [w, dp] + o, [w, ¢]]
= dlw, ¢] + [w, dp] + [w]w, ¢]]
= [dw’ gD] - [C(), ng] + [C(), ng] + [C()[CU, gD]]
= [dw, @] + [, [w, ¢]].
Here we used the fact that for « € Q¥(P, g) and g € Q!(P, g):

dlec, B] = [det, B] + (=1)*[et, d].

This can be readily checked from the definition, and it follows since the bracket is defined in terms of
the wedge product.
Now let’s evaluate at two vectors u, v € TP:

[, [w, @]1(u, v) = [w(W), [w, p](V)] — [@(), [@, p](W)]
= (), [w(v), p]] — [w(v), [w(w), ¢]]
= —[w(w), [, w()]] — [w(V), [ow), ¢]]
= [@, [w(v), w(W)]]
= [[w(w), w(v)], ¢]
= [%[w, co],go] (u,v).

Therefore, we obtain

d°(d°9) = [do, 9] + 5[, 0 0] = [0, 9]

3 The relation with connections on vector bundles

3.1 From vector bundles to principal bundles

Let’s go back to known waters. Let g : E — M be a vector bundle of rank k over M. Recall that a
connection V on E is (at least in one of its several flavors) a bilinear map

V : (M) X T(E) - T'(E),
where we denote V(X)(s) = Vx(5s), such that forall X € ¥(M), s € T(E) and f € C®(M):
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I. Vsz = fVXS, and
2. Vx(fs) = fVxs+ Lx(f)s (Leibniz rule).

At this point, we know that we have a special principal GL(k, R)-bundle that is directly related to E,
namely the frame bundle Fr(E). Is there any relation between the connection V and possible connec-
tions on Fr(E)? Can we find a connection 1-form wy € Q! (Fr(E), gl(k, R)) that is induced by V?

Indeed, we can. First, we can rethink this map by fixing s € T'(E). With s held fixed, we can then
write

Vs : (M) - I(E)
X VXS.
By property (1) above, the map Vs is C*(M)-linear, and so we can interpret it as an E-valued 1-form

on M:
Vs € QY(M, E).

If f € C*®(M) is a function, then from the Leibniz rule we obtain that for all X € 2(M),

V(f)X) = Vx(fs) = (Lx s+ fVxs =df X)s + fVs(X),
SO we may write
V(fs)=df ® s+ fVs

Now let U be a trivializing open set of the bundle, and let {e; , ... €} be a frame on Eyy := 7~ }(U). Of
course, each element ¢j is a section of E, so we can consider Vej e oYU, Ey) (why Ey; and not just
E?). In particular, we can write Vej as

Vej = Z IJ‘-lei,
i

where each l}i € QN(U) is a 1-form. We can collect all the I}i in a gl(k, R)-valued form, whose entries
are called the connection coefficients (or in some cases, the Christoffel symbols)

o I
r=(: =~ :|eQy(UglkR)).
| K Vs

What do we have at this point? For each frame {ey, ..., e;} of E, which is defined locally on U C M,
we have a gl(k, R)-valued 1-form T. This smells quite a lot like what we’re looking for! If we can show
that the connection coeffients transform nicely with respect to change of frames, we can invoke the
physicists-did-nothing-wrong proposition (proposition 1.10) and construct a connection on Fr(E).

So lete], ..., e; be another frame, defined on an open U" € M. On U N U’, each element €] can
be expressed in terms of the first frame. For each x € U N U’ there is a matrix A(x) € GL(k, R) such
that

§(0) = Y A jeil)

or rather, we have a GL(k, R)-valued function A on U N U’, which is precisely the transition function
of the trivialization of Fr(E). Now, when we evaluate the connection on e]f , we get

Ve = Z V(A je)
4
= Z (d.Al] ® €; +AijVei)
4
:Z(dAij ®e +Aij21"i’er>
13 r
D (dAij + ZAVW) ®e;.
r

1

18



On the other hand,

Ve = 27 = 1AL
NS

ir

Comparing with the previous result, we obtain

oAl i r i
S A = a4 DA
r r

Noting that the upper index is the column index, we see that the previous equation is for the compo-

nents of the matrix equation
Al =dA +TA,

that is

["=A"TA+A71dA.

Indeed, we can now invoke proposition 1.10 and claim:

Theorem 3.1 (Connection induced by connection on vector bundle).

Let V be a connection on a vector bundle E — M of rank k. Then there is a unique connection
1-form wy on the frame bundle ¥r(E) such that, given a local frame e . U — Fr(E), the local
gauge potential is given by the connection coefficients:

e*wy =T.

There’s also a direct way to construct wy given a connection V, that does not require using the
physicists-did-nothing-wrong proposition. It can be found in [Biri1, example2.3.3] and [ Crars, section
2.3.5].

3.2 Interlude: Associated bundles

The converse of theorem 3.1 can be done with a little bit more generality, without any additional com-
plications. We will see that given any connection w € QL(P, g), we can find a connection on a wide
array of vector bundles that are related to P.

LetG < P A M be a principal G-bundle, V a vector spaceand p : G — GL(V) a representation.
We define the associated bundle P X, V as the quotient of P X V under the action

(p,v)-g=(p-gpgHv).

We will denote p(g)v simply as g - v whenever there is no chance for confusion, and the elements of E
in terms of representatives, e.g. [p, v]. We have a projection map 7t : E — M ang([p,v]) = 7(p).
This map is well-defined since 7(p - g) = 7(p) forallp € Pand g € G.

Of course, we have just given the definition as a set. We should check that P X o Vista manifold
2. a vector bundle. Usually we would skip this part but actually the construction of the charts and
trivialization on E will give us a better understanding of it, and will tell us how it looks locally.

First, let’s look at trivializations. Once we have the trivializations, we can construct a coordinate
atlas adapted from the atlas of M, as with all fiber bundles.

For each p € P, we defineamapi, : V — Eas

ip(0) = [p, vl

This map is a bijection from V' to the fiber Ez(,) above 7r(p). Clearly, by construction i, is surjective.
And to see injectivity, suppose that ip(v) = ip(v"). Then [p,v] = [p, V'], so there existsa g € G such
that (p,v) = (p- g g~! - V). But the action of G is free on P, so necessarily g = ¢, and sov = v’.
This allows us to endow Ey(p) with a vector space structure such that i), is a linear isomorphism; i.e. as
[p,v] + alp,v'] = [p,v + av'] with the same p. Of course, this should be the same regardless of
the choice of p (in the fiber of 77, that is). Indeed, if p” € P is such that 7(p") = 7(p), then thereisa
g€ Gsuchthatp' =p-g.

Therefore, we have that

iy =[p,v]=[p-gv]l=I[p,g vl =iy(g v)=(ipop(@)V).

Then i,y and ip, are related by an automorphism of V/, so the induced vector space structure on Ez(p)
is the same. This last result will be useful again later, so let’s put it as a lemma.
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Lemma 3.2.

Let G < P — M be a principal G-bundle, V a vector space and p : G — GL(V) a representa-
tion. Write E = P X, V for the bundle associated to P via p. For p € P, define iy © V — Ez(p)
as ip(v) = [p,v]. Then iy is a bijection, and for all g € G,

ip.g = ip o p(g)

Let {U;};; be a cover of M that trivializes P. For each U; we have a canonical section (or local
gauge) 5; @ U; — Ry, (see section 2.2). With this canonical section we can construct a trivialization
Y, : U XV = Ey. as

L
Wi(x, 0) = i) (V) = [8i(), v].

It can be shown [see e.g. Nabio, pp. 381] that when we endow E with the quotient topology, E is
Hausdoft and each map ¥; is a homeomorphism. This is a straightforward (albeit a bit tedious) check.
How do the transition functions look? Consider two trivializing open sets U, Uj with their canon-

ical sections s;, 5j, and let Uj; = U; N U;. We have that there is a transition function g;; : Ujj = G
such that for all x € Ujj,
Sj(x) = si(x) - gij(x)-

Then, for (x,v) € Ujj X V, we have

(x,0) = [55(x), v] = [si(x) - gij(x), v] = [5;(x), (%) - v] = ¥y(x, g;;(V))-

This implies that
(7! o ¥))(x,0) = (x,g;(x) - v) = (x, p(g;;(x))(V)). (4)

Then the transition functions are of the form p(g;;) € GL(V), with g;; the gauge transitions of the
principal bundle. This tells us that there is 2 unique smooth structure on E such that the ¥; are diffeo-
morphisms, and such that 75 : E — M is a smooth surjection. Thus, E is a vector bundle over M
with typical fiber V. Let’s put it as a proposition.

Proposition 3,3 (Associated bundle is a smooth vector bundle).

Let G & P — M be a principal G-bundle, V' a vector space and p ©: G — GL(V) a rep-
resentation. Write E = P X, V for the bundle associated to P via p. Then E is a smooth
vector bundle over M with typical fiber V. Furthermore, given a cover {Uy};; that trivializes
P, with canonical sections s; : Uy — P and transition functions g;; * Uy N U — G, the maps
¥; . U;XV — E given asWi(x,0) = [5i(X), ] are trivializations of E, with transition functions
p(gij) : UynU — GL(V).

In physics, we usually keep to local gauges. In a local gauge (U, 5;) , the bundle P X, V' is trivial
and “looks like” U; X V. Equation (4) says that under a change of gauge s; > sj, an elementv € V
transforms as v — p(g;j)v.

Examg_[lg 3.4 (Frame bundles).

Let E = M be a real vector bundle of rank k over a smooth manifold M. We have a principal
GL(k, R)-bundle over M, which is the frame bundle Fr(E), and the identity representation of
GL(k,R) on R¥ id : GL(k, R) - GL(R¥). Itisa straightforward check to see that

E = Fr(E) x4 RK.

Example 3.5[(Adjoint bundle).

LetG & P — M bea principal G bundle. We have a natural representation Ad : G — GL(g).
The vector bundle associated to P via Ad is called the adjoint bundle of P, and is denoted
Ad(P) :=P X4 6.

In particular, if E = M is a vector bundle of rank k, and Fr(E) is its frame bundle, then we
have that
Ad(Fr(E)) =~ End(E).
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How do sections of E'look like locally? If we fix a cover {U;};; of M that trivializes P, with canonical
sections §; : U; = P, we have that this cover also trivializes E. Suppose that ) : M — E is a section
of E. When restricted to Uj, we have that  looks locally like

(¥ o )(x) = (x, (X)),

for some smooth ¢; : U; — V. In fact, given a local gauge s;, there is a bijection between smooth maps
¥; : Uy = Vandlocal sections 3 : U; — E. On the overlaps U; N U, the same argument of before
shows that the “trivializations” of the sections transform as

() = gji(x) - (%) = Pi(x) = g;; ()" - Py(x).

Now we see that there is a deeper relation between sections of E (in fact, of E-valued forms) and
V-valued forms on P. Again, letp : M — E be a section. In alocal trivialization U; with canonical
section s; : U; — P, we can write any element p € By, = 7~ !(U;) uniquely as

p=si(x)- g

where X = 7(p). By the discussion above, there is a function 3; : U; — V such thatforall x € Uj, ¢
looks like

P(x) = [5:(x), hi(x0)].

So in general, we can change the representative of $(x) to be of the form [p, v] for any p in the fiber
above x;

P(x) = [5:(x), Yi ()] = [5:(x) - g &7 ' - Pi(0)]-
We can thus define a function ¢J; : By, — Vas
Pilsi(0) - &) =gt - Y.
Itisastraightforward check to see that this function is well-defined on Ry, ; and in fact that the collection
of{lﬁi}iel glues together to amap ¥ : P — V which satisfies that forall p € Pand g € G,

D(p-g) =g P(p)

We say that § is G-equivariant or pseudotensorial of type p.
This is a general fact: k-forms on M which are valued in E correspond to a certain kind to k-forms
on P which are valued in P.

Definition 3,6 (Tensorial form).
Let G < P — M be a principal G-bundle. We say that a form o € QK(P, V) is tensorial of

type p or basic if
1. o is horizontal, i.e. Lyt = 0 for any vertical vector X € TP; and

2. a is pseudotensorial of type p, that is,
oga=p(gHoa

We denote the space of tensorial k-forms of type p by Q’F‘,(P, V).

Theorem 3.7 (Lowering of tensorial forms).

Let G & P — M be a principal bundle, V' a vector space, p © G — GL(V) a representation
of GonV and E = P X, V the associated vector bundle. Then there is a lincar isomorphism
h : QkP,V) - OK(M, E).

Proof (Sketch). — Define h : Q};(P, V) = QK(M, E) as follows: given 5 € Q’;(P, V), define

W@)x(Ks s Vo) 2= [P 8, (V1o Vi)

where p € 771(x), ¥, ..., i € T M, and the V; are lifts of the V; that is, Tpﬂ'(i_/i) = Vfori =
1,2,...k.
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It is straightforward, but a bit long, to check that & is well-defined.
The inverse of h can be given explicitly: given 3 € QK(M, E), we define h~l¢ € Q’;(P, V)as

(h71¢)py (V1 e, Vi) 1= i (7 ) (W e, V).

Again, it is a straightforward check to see that these maps are well-defined, linear, and inverses of one
another. These maps are natural in the sense that they are the obvious choice given the data that we
have.

The associated bundle is a vector bundle with fiber V, so we now can ask ourselves if, given a con-
nection w on P, there is an induced connection V¥ on E.

3.3 From principal bundles to vector bundles

As above, for any connection V on E, given a section s € I'(E), we have an E-valued 1-form Vs €
Q!(M, E), so we can think of a connection asamap V : T['(E) — Q!}(M, E). Noting that a section
of E is just an E-valued O-form, and using the isomorphism h of theorem 3.7,we see that the problem
is reduced to finding a suggestively-named map

dv: Q. (P,V) - Ql (P,V),

that is zicely related to w and that satisfies the Leibniz rule when we go back to M. Once we have such
amap, we can define V¥ on E such that the following diagram commutes:

Qyp,v) <5 al(P,v)
\Lh \l/h
I(E) —= % QL(M,E)

But wait a minute... for the case where p = Ad and V' = g, we already have a such a map, namely the
exterior covariant derivative d, which acts on basic forms according to proposition 2.9 as

d“a = da + [w, a].

And now we use the ancient art of reverse-engineering. If o is a 0-form, we can rewrite [w, @] in terms
of the adjoint representation, precisely as [w, a] = ad(w)(«), where ad = T, Ad, so that

d?a = da + (T, Ad cw)(a@).
This suggests that for a general vector space V and representation o : G — GL(V), we define
d?a :=da + (T,p o w)(a),

on all basic 0-forms. The derivative T,p : g = End(V) is called the infinitesimal action of g on V,
induced by the action p.
Explicitly, for p € Pand X € T,P,itis defined as

dwap(X) = (da)p(X) + ((TeP)(COp(X)))(OC(P))-
What we now need to show is that the map
V® :=hod*oh™! : I(E) - Q'(M,E),

satisfies the Leibniz rule,

Ve(fs)=df @ s+ fV¥s.

forall f € C®(M)and s € T(E).
To prove this, we need to get our hands dirty. Let f € C®(M) and s € T'(E). The basic 0-form
induced on P by fsis

h=(f9)(p) = iy (f@(p)s(a(p)) = (f o m)(p)iy * (s(m(p))),
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andso h™1(fs) = (fomr)h~1(s). Write f = fomr,and§ = h~(s). Then f is a G-invariant real-valued

function and §is a basic V-valued function. Now we apply d*:
d°(f3) = d(f3) + (Tp o @)(f8) = df §+ fd§ + f(Top o )(8) = df 5+ fd*3.

Here we have that f comes out of the differential of the representation, because once evaluated at wp,(X)
for some p € P, X € T,P, (Tp)(wp(X)) is linear. Now we apply h, evaluate at a point x € M and a
vector X € T, M:

VE(f$)x(X) = h(d®(h™'(f3))x(X)
= h(df 5+ fd?8),(X)
= [p, T,fX)3(p) + f(p) d°5, (X)].
Now we recall that f = f o 7,50 f(p) = f(x) and

T,f(X) = T fT,m(X) = T f(X).

Therefore

VE(f$)x(X) = [p, T fXOS(P)] + [p, f(x) 45, (X)]
= T fX)p, 5(p)] + f()[p, d*5, (X)]
=([df @ s+ fV¥s)p(X).

Then V¢ is, indeed, a connection on E. We have then proved

Theorem 3.8 (Connection induced by a connection on principal bundle).
Ler G < P — M be a principal G-bundle, V' a vector space, p : G — GL(V) a representation
and E = P Xo V the associated bundle. Given a connection w € T1(P, Q) there is an induced
connection V® : T(E) = QYM, E) such that the following diagram commutes:

Qyp,v) 3 al(p,v)

bk

I(E) —=% QY(M, E)

Another way to prove this theorem is to go local, and define the connection in terms of the connection
coefficients. This suffices to uniquely define a connection on a vector bundle [see Nici8, Proposition
3.3.5], if the coefficients transform well enough.

So let’s go local, and try to see what the beast of V¥ = h o d® o h™1 is. As always, let {Uj},; be
a cover of M that trivializes P, with canonical sections s; : U; — Ry, and gauge transitions g;; :
U; N U — G. As we saw in section 3.2, this trivialization also induces a trivialization of the associated
bundle E =P X, V.

We can go further and see that the trivialization of P also makes a further identification in the iso-
morphism le‘(P, V) = QK(M,E). Givenaforma € QIE(P, V), we have that

(@) (K, - V) = [P, ap(Vis e, VIO

for p € 77 1(x) and V1, ..., W lifts of the V;, ..., V. But we have a preferred choice of element in the

fiber of x, namely p = s;(x). Similarly, we have a preferred lift of the ¥, namely as _Ij/ = Tysi(V). We
then have that

h(@)x (s, i) = [51(x), (5700 (W, oo, V).

Thus, we have that the following diagram commutes:

st
Qk(Ry,, V) — XU, E)

S b

ok, v)
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This tells us that, given a choice of trivialization (gauge), V-valued tensorial forms on P and E-valued
forms on M both reduce to V-valued forms on M.
In particular, given section 3 : M — E, which looks locally on Uj as

P(x) = [5:(x), $i(x)]

the above diagram tells us that

P(x) = (h o h™HR()) = (is;(x) © ST (BH() = [5:(x), 571 P)()],

but since i, () is an isomorphism, then
$i(x) = s7(h~"P)().
Now apply V¥1. By the previous result,
VeP(x) = h(d®(h™'9) (x)) = [5i(x), 5] (A7 P)(x)].
Therefore, it suffices to find s7(d*h~19)(x). For the first term, we have
s{(dh~'9) = dsj(h ') = dy;.
For the second term we need to be more careful. Let’s evaluate at x € U; and V' € T, M:

$i (Top 0 @(h™ 1)) (V) = (Top(@s,() (51 VIR (si(x))) 2= (Tep 0 ) (VI(@i(x)).

Here we have denoted w; = s} (in consistence with the notation of proposition 1.8). Therefore, the
local expression of the connection on E is (dropping the arguments)

Ve = [s;, dpp; + (Tep © @) ()]

3.4 In physics language

We can reduce the notation a bit more (and make it a bit more confusing), add coordinates, and obtain
the equations of the “covariant derivative on matter fields” thatis used by physicists. In physics, a matter
field is a (local expression of a) section of the associated bundle E to a principal G-bundle. The group
G is called the group of local invariance. A section s : U — P isalocal gauge, and the local potentials
of a connection are denoted by A : = s*w.

The infinitesimal action is not denoted explicitly, so we only write £ - v instead of T,0(§)(v), for
& € gandv € V. Thus, if we choose a basis {ey, ... , € } of V, then we can write the infinitesimal action

as a matrix pl‘OdLICtZ
A-e,=Ab e
a a®b>

with AP, € QNU) for all a,b. If we have a section ¥ : M — E, then in the local gauge § it can
be written as W = [s, 9], withp : U — V. This ¢ is called a matter field, and in the basis of V, it
becomes

P =y,
If we assume that out trivializing cover is also a coordinate atlas, then on the chart U; we also have
coordinates x¥. Therefore, we write

APy = APy, dxF.

Finally, when we apply the connection to ¥
Vew =[5, Dy,
where
DYp=dp+A- -9
= (0,9 + Aabﬂd)b) dx* ® e,
= D (dxH @ eg).
Here, the operator D, is called the covariant derivative:

Dy =8y + Ay
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