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Notation
These notes compile some general facts about connections on principal bundles, and their relation to
connections on vector bundles.

A fewnotes on notation: We areworking in the context of aprincipal𝐺-bundle𝑃 over amanifold

𝑀. This we denote as𝐺 ↪ 𝑃 𝜋→ 𝑀; where 𝜋 ∶ 𝑃 → 𝑀 is the projection map. The right action of𝐺
on𝑃 is denoted as𝜎 ∶ 𝑃×𝐺 → 𝑃. For any 𝑔 ∈ 𝐺, we denote rightmultiplication by 𝑔 as𝜎𝑔 ∶ 𝑃 → 𝑃;
and for every 𝑝 ∈ 𝑃, we denote the orbit map as 𝜎𝑝 ∶ 𝐺 → 𝑃.

Given a smooth function 𝑓 ∶ 𝑀 → 𝑁 between manifolds, we denote the tangent map at some
𝑥 ∈ 𝑀 as 𝑇𝑥𝑓 ∶ 𝑇𝑥𝑀 → 𝑇𝑓(𝑥)𝑁. This is to explicitly show the functoriality of 𝑇𝑥.

1 Connections on principal bundles
1.1 Connections as horizontal distributions
Recall that a vector 𝑣 ∈ 𝑇𝑝𝑃 is called vertical if

𝑇𝑝𝜋(𝑣) = 0.

We denote the subspace of vertical vectors by 𝑉𝑝𝑃 ⊂ 𝑇𝑝𝑃. By definition, 𝑉𝑝𝑃 is nothing more than the
kernel of 𝑇𝑝𝜋, so we have a short exact sequence

0 𝑉𝑝𝑃 𝑇𝑝𝑃 𝑇𝜋(𝑝)𝑀 0
𝑇𝑝𝜋 .

*Please send corrections, suggestions, etc. to squinterodlr@gmail.com. Latest version on homotopico.com/notes .
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Since this is a sequence of vector spaces, it splits, and thus we have an isomorphism

𝑇𝑝𝑃 ≅ 𝑉𝑝𝑃 ⊕ 𝑇𝜋(𝑝)𝑀.

However, the splitting (and thus the isomorphism) is not canonical: it depends on a choice of a sub-
space 𝐻𝑝 ⊂ 𝑇𝑝𝑃 that is complementary to 𝑉𝑝𝑃, and an isomorphism 𝑇𝜋(𝑝)𝑀 → 𝐻𝑝. We call any
complementary space to 𝑉𝑝𝑃 a horizontal space at 𝑝, such that:

𝑇𝑝𝑃 = 𝑉𝑝𝑃 ⊕ 𝐻𝑝.

Figure 1: A choice of a horizontal space𝐻𝑝 at 𝑇𝑝𝑃. There are many such choices (in dotted lines).

Oncewe have chosen a single horizontal subspace𝐻𝑝 ⊂ 𝑇𝑝𝑃 at𝑝, we can find horizontal subspaces
for all points in the same fiber of 𝑝. This follows since the action of𝐺 on 𝑃, which we denote 𝜎𝑔(𝑝) =
𝑝 ⋅ 𝑔, is a fiber-preserving diffeomorphism, and thus 𝑇𝑝𝜎𝑔 is an isomorphism of tangent spaces that
preserves the vertical subspace. This suggests that 𝑇𝑝𝜎𝑔(𝐻𝑝) is a horizontal subspace at 𝑝 ⋅ 𝑔. Indeed,
noting that

𝑇𝑝⋅𝑔𝜋 ∘ 𝑇𝑝𝜎𝑔 = 𝑇𝑝(𝜋 ∘ 𝜎𝑔) = 𝑇𝑝𝜋(𝑣),
we see that 𝑇𝑝𝜋(𝑉𝑝𝑃) ⊆ 𝑉𝑝⋅𝑔𝑃. Similarly, if 𝑢 ∈ 𝑉𝑝⋅𝑔𝑃, we can write

𝑢 = 𝑇𝑝𝜎𝑔(𝑇𝑝⋅𝑔𝜎𝑔−1(𝑢)) = 𝑇𝑝𝜎𝑔(�̃�),

where by the same argument above �̃� = 𝑇𝑝⋅𝑔𝜎𝑔−1(𝑢) ∈ 𝑉𝑝𝑃 is vertical. Therefore, we obtain that

𝑉𝑝⋅𝑔𝑃 = 𝑇𝑝𝜎𝑔(𝑉𝑝𝑃).

Furthermore, since 𝑇𝑝𝜎𝑔 ∶ 𝑇𝑝𝑃 → 𝑇𝑝⋅𝑔𝑃 is an isomorphism, we obtain that

𝑇𝑝⋅𝑔𝑃 = 𝑇𝑝𝜎𝑔(𝑇𝑝𝑃) = 𝑇𝑝𝜎𝑔(𝑉𝑝𝑃) ⊕ 𝑇𝑝𝜎𝑔(𝐻𝑝) = 𝑉𝑝⋅𝑔𝑃 ⊕ 𝑇𝑝𝜎𝑔(𝐻𝑝),

And so we have proved the following:

Lemma 1.1 (Translation of horizontal subspaces).
If 𝐻𝑝 ⊂ 𝑇𝑝𝑃 is horizontal at 𝑝, then for all 𝑔 ∈ 𝐺, 𝑇𝑝𝜎𝑔(𝐻𝑝) is horizontal at 𝑝 ⋅ 𝑔.

So far we have been working at a single point 𝑝 ∈ 𝑃. We can now consider a smooth choice of
horizontal spaces above each element of 𝑃:

Definition 1.2 ((Principal) Connection).
A connection or Ehresmann connection on 𝑃 is a distribution𝐻 on 𝑃 such that for all 𝑝 ∈ 𝑃,
𝐻𝑝 ⊂ 𝑇𝑝𝑃 is a horizontal subspace. We say that a connection 𝐻 is principal if it is compatible
with the group action in the sense that for all 𝑔 ∈ 𝐺 and all 𝑝 ∈ 𝑃,

𝑇𝑝𝜎𝑔(𝐻𝑝) = 𝐻𝑝⋅𝑔.
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The notion of connection is independent of the group action on the total space 𝑃, and indeed it ap-
plies to general fiber bundles. The condition for a connection to be principal states that our choice of
horizontal subspaces along a single fiber is consistent with the “translation” lemma 1.1.

We think of a connection𝐻 as a preferred way of relating “neighboring” fibers of the bundle. Once
we have 𝑝 ∈ 𝑃, we might think that the preferred way of moving to another fiber is along a “direction”
(i.e. tangent vector) in the horizontal space𝐻𝑝. This gives us a little bit of intuition and (sort of) justifies
(kind of) the name connection. In practice, however, working with distributionsmight be cumbersome.
Fortunately for us, there are other (equivalent) presentations of connections.

1.2 Connections as 1-forms
Let 𝔤 be the Lie algebra of 𝐺. Recall that for all 𝑝 ∈ 𝑃, we have the infinitesimal action of 𝔤 on 𝑇𝑝𝑃,
𝑎𝑝 ∶ 𝔤 → 𝑇𝑝𝑃 given as

𝑎𝑝(𝑋) ∶=
d
d𝑡
|||𝑡=0

𝑝 ⋅ exp(𝑡𝑋).

Writing 𝜎𝑝 ∶ 𝐺 → 𝑃 as 𝜎𝑝(𝑔) = 𝑝 ⋅ 𝑔, we see that the infinitesimal action is simply the differential of
𝜎𝑝:

𝑎𝑝(𝑋) = 𝑇𝑒𝜎𝑝(𝑋).
This infinitesimal action induces, for each 𝑋 ∈ 𝔤, a vector field 𝑋♯ called the f undamental vector
field associated to 𝑋 given by

𝑋♯
𝑝 ∶= 𝑎𝑝(𝑋).

We have that 𝜎𝑝 is a diffeomorphism onto the fiber containing 𝑝, and thus 𝑎𝑝 = 𝑇𝑒𝜎𝑝 induces a

linear isomorphism 𝔤
𝑎𝑝
≅ 𝑉𝑝𝑃.

Suppose that we have a principal connection𝐻 on 𝑃. Then in particular, we have a subspace𝐻𝑝 ⊂
𝑇𝑝𝑃 such that 𝑇𝑝𝑃 = 𝑉𝑝𝑃 ⊕ 𝐻𝑝, and so we can construct a map 𝜔𝑝 ∶ 𝑇𝑝𝑃 → 𝔤 as

𝜔𝑝(𝑣𝑉 + 𝑣𝐻) = 𝑎−1𝑝 (𝑣𝑉 ),

where 𝑣𝑉 ∈ 𝑉𝑝𝑃 and 𝑣𝐻 ∈ 𝐻𝑝. By construction, we have that

𝜔𝑝(𝑎𝑝(𝑋)) = 𝑋

for all𝑋 ∈ 𝔤. We can also see how𝜔𝑝 compares to𝜔𝑝⋅𝑔, sincewe know that our horizontal distribution
behaves nicely along the fibers of the action.

For this, first note that for all 𝑔 ∈ 𝐺,

𝑇𝑝𝜎𝑔(𝑎𝑝(𝑋)) =
d
d𝑡
|||𝑡=0

𝜎𝑔(𝑝 ⋅ exp(𝑡𝑋))

= d
d𝑡
|||𝑡=0

𝑝 ⋅ exp(𝑡𝑋)𝑔

= d
d𝑡
|||𝑡=0

(𝑝 ⋅ 𝑔) ⋅ (𝑔−1 exp(𝑡𝑋)𝑔).

Now we ask ourselves, do we know what the tangent vector of 𝑔−1 exp(𝑡𝑋)𝑔 is? Yes, yes we do:

d
d𝑡
|||𝑡=0

𝑔−1 exp(𝑡𝑋)𝑔 = d
d𝑡
|||𝑡=0

Conj𝑔−1(exp(𝑡𝑋)) = Ad𝑔−1(𝑋),

where we have written1 Conj𝑔(ℎ) = 𝑔ℎ𝑔−1, and Ad𝑔 = 𝑇𝑒 Conj𝑔. Then we have

𝑇𝑝𝜎𝑔(𝑎𝑝(𝑋)) =
d
d𝑡
|||𝑡=0

(𝑝 ⋅ 𝑔) ⋅ (𝑔−1 exp(𝑡𝑋)𝑔) = 𝑎𝑝⋅𝑔(Ad𝑔−1(𝑋)).

With this, we can see that for 𝑣 ∈ 𝑇𝑝𝑃, which we write as 𝑣 = 𝑣𝑉 + 𝑣𝐻 with 𝑣𝑉 = 𝑎𝑝(𝑋) for some
𝑋 ∈ 𝔤:

(𝜎∗𝑔𝜔)𝑝(𝑣𝑉+𝑣𝐻) = 𝜔𝑝⋅𝑔(𝑇𝑝𝜎𝑔(𝑣𝑉 )+𝑇𝑝𝜎𝑔(𝑣𝐻)) = 𝜔𝑝⋅𝑔(𝑇𝑔𝜎𝑔(𝑎𝑝(𝑋))) = Ad𝑔−1(𝑋) = (Ad𝑔−1 ∘𝜔𝑝)(𝑣),

1https://xkcd.com/927/
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and so we conclude that
(𝜎∗𝑔𝜔) = Ad𝑔−1 ∘𝜔.

Then we have proved, modulo the small detail of smoothness2, the following:

Proposition 1.3 (1-form induced by principal connection).
Let 𝐻 be a principal connection on 𝐺 ↪ 𝑃 𝜋→ 𝑀. Then there exists a (unique) 𝔤-valued 1-form
𝜔 ∈ Ω1(𝑃, 𝔤), such that for all 𝑝 ∈ 𝑃, 𝑔 ∈ 𝐺 and 𝑋 ∈ 𝔤:

1. 𝜔𝑝(𝑎𝑝(𝑋)) = 𝑋 ,

2. 𝜎∗𝑔𝜔 = Ad𝑔−1 ∘𝜔, and

3. ker(𝜔𝑝) = 𝐻𝑝.

We call any 𝔤-valued 1-form satisfying these properties a connection 1-form:

Definition 1.4 (Connection 1-form).
A connection 1-form on 𝑃 is a 𝔤-valued 1-form 𝜔 ∈ Ω1(𝑃, 𝔤) such that for all 𝑝 ∈ 𝑃, 𝑔 ∈ 𝐺
and 𝑋 ∈ 𝔤:

1. 𝜔𝑝(𝑎𝑝(𝑋)) = 𝑋 , and

2. 𝜎∗𝑔𝜔 = Ad𝑔−1 ∘𝜔.

The converse to proposition 1.3 is also true:

Proposition 1.5.
Principal connection induced by connection 1-form Let 𝜔 ∈ Ω1(𝑃, 𝔤) be a connection 1-form.
Then the distribution 𝐻 defined pointwise as

𝐻𝑝 = ker(𝜔𝑝) ⊂ 𝑇𝑝𝑃

is a principal connection on 𝑃.

Proof.— First, let’s see that indeed𝐻𝑝 = ker(𝜔𝑝) is horizontal. If 𝑣 ∈ ker(𝜔𝑝)∩𝑉𝑝𝑃, then 𝑣 = 𝑎𝑝(𝑋)
for some 𝑋 ∈ 𝔤, so that

0 = 𝜔𝑝(𝑣) = 𝜔𝑝(𝑎𝑝(𝑋)) = 𝑋,
and thus 𝑣 = 0. Therefore ker(𝜔𝑝) ∩ 𝑉𝑝𝑃 = {0}. Now for an arbitrary 𝑣 ∈ 𝑇𝑝𝑃, set

𝑣𝑉 = 𝑎𝑝(𝜔𝑝(𝑣)).

Then we have that 𝑇𝑝𝜋(𝑣𝑉 ) = 0, since it is in the image of 𝑎𝑝, and thus 𝑣𝑉 ∈ 𝑉𝑝𝑃. Finally, setting
𝑣𝐻 = 𝑣 − 𝑣𝑉 , we have

𝜔𝑝(𝑣𝐻) = 𝜔𝑝(𝑣) − 𝜔𝑝(𝑎𝑝(𝜔𝑝(𝑣))) = 𝜔𝑝(𝑣) − 𝜔𝑝(𝑣) = 0,

and so 𝑣𝐻 ∈ ker𝜔𝑝 = 𝐻𝑝. We have then shown that 𝑣 = 𝑣𝑉 + 𝑣𝐻 , with 𝑣𝑉 ∈ 𝑉𝑝𝑃 and 𝑣𝐻 ∈ 𝐻𝑝,
and so

𝑇𝑝𝑃 = 𝑉𝑝𝑃 ⊕ 𝐻𝑝.
Thus𝐻𝑝 is a horizontal subspace. Now to see that𝐻 is principal, note that

𝜔𝑝⋅𝑔(𝑇𝑝𝜎𝑔(𝑣)) = Ad𝑔−1(𝜔𝑝(𝑣)).

Since both 𝑇𝑝𝜎𝑔 and Ad𝑔−1 are isomorphisms, we have that 𝑣 ∈ ker𝜔𝑝 if and only if 𝑇𝑝𝜎𝑔(𝑣) ∈
ker𝜔𝑝⋅𝑔, and thus

𝑇𝑝𝜎𝑔(𝐻𝑝) = 𝐻𝑝⋅𝑔.
Finally, smoothness follows from the fact that 𝜔 is a smooth form. ■

From now on, if𝜔 is a connection 1-form, we will simply call it a connection. In physics lingo, connec-
tions are often called gauge fields or gauge potentials.

2We can handwave it away by saying that it follows from the smoothness of the distribution𝐻.

4



Example 1.6 (Maurer-Cartan connection).
Let 𝐺 be a Lie group, which we interpret as a principal 𝐺-bundle over a one-point space 𝐺 ↪
𝐺 𝜋→ {⋆}. For each 𝑔 ∈ 𝐺, we have a way to map 𝑇𝑔𝐺 to 𝔤 = 𝑇𝑒𝐺, simply by pushing vectors
via one of the multiplications; for instance

𝑇𝑔𝐿𝑔−1 ∶ 𝑇𝑔𝐺 → 𝔤 = 𝑇𝑒𝐺.

We then define theMaurer-Cartan form of𝐺, denoted byΘ ∈ Ω1(𝐺, 𝔤), as

Θ𝑔 = 𝑇𝑔𝐿𝑔−1 .

The heading of the example spoiled the surprise: Θ is a connection on𝐺. Indeed, for 𝑋 ∈ 𝔤 =
𝑇𝑒𝐺, we have that

𝑎𝑔(𝑋) =
d
d𝑡
|||𝑡=0

𝑔 exp(𝑡𝑋) = 𝑇𝑒𝐿𝑔(𝑋),

so that
Θ𝑔(𝑎𝑔(𝑋)) = 𝑇𝑔(𝐿𝑔−1)(𝑇𝑒𝐿𝑔(𝑋)) = 𝑇𝑔(𝐿𝑔−1 ∘ 𝐿𝑔)(𝑋) = 𝑋.

Now for any ℎ ∈ 𝐺, we have

(𝜎∗𝑔Θ)ℎ(𝑋) = Θℎ𝑔(𝑇ℎ𝜎𝑔(𝑋)) = 𝑇ℎ𝑔𝐿𝑔−1ℎ−1𝑇ℎ𝜎𝑔(𝑋) = 𝑇ℎ(𝐿𝑔−1ℎ−1 ∘ 𝜎𝑔)(𝑋).

But then, we see that

(𝐿𝑔−1ℎ−1 ∘ 𝜎𝑔)(𝑥) = 𝑔−1ℎ−1𝑥𝑔 = (Conj𝑔−1 ∘𝐿ℎ−1)(𝑥),

such that the differential at ℎ is

𝑇ℎ(𝐿𝑔−1ℎ−1 ∘ 𝜎𝑔) = 𝑇ℎ(Conj𝑔−1 ∘𝐿ℎ−1) = 𝑇𝑒 Conj𝑔−1 𝑇ℎ𝐿ℎ−1 = Ad𝑔−1 ∘Θℎ,

and so, indeed
(𝜎∗𝑔Θ) = Ad𝑔−1 ∘Θ.

With the Maurer-Cartan form, we can construct connections on any principal bundle.

Example 1.7 (Trivial connection on a trivial bundle).
Let 𝑃 = 𝑀×𝐺 be a trivial bundle, and pr2 ∶ 𝑀×𝐺 → 𝐺 be the projection onto𝐺. IfΘ is the
Maurer-Cartan form of𝐺, then pr∗2Θ is a connection on𝑀×𝐺, and its horizontal distribution
is precisely given by𝐻(𝑥,𝑔) ∶= 𝑇𝑥𝑀 ⊕ 0 ⊂ 𝑇(𝑥,𝑔)(𝑀 × 𝐺).

1.3 Local expressions, or, why physicists did nothing wrong
Consider a trivializing cover {(𝑈𝑗 , Ψ𝑗)}𝑗∈𝐽 of the bundle 𝜋 ∶ 𝑃 → 𝑀, where we write each Ψ𝑖 ∶
𝜋−1(𝑈𝑖) → 𝑈𝑖 × 𝐺 as

Ψ𝑖(𝑝) = (𝜋(𝑝), 𝜓𝑖(𝑝)),
with 𝜓𝑖 ∶ 𝑈𝑖 → 𝐺. We know that each trivializationΨ𝑖 has an associated section 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃, given
by

𝑠𝑖(𝑥) = Ψ−1
𝑖 (𝑥, 𝑒)

for all 𝑥 ∈ 𝑈𝑖. These sections are called local gauges in the physics literature.
Note that for all 𝑥 ∈ 𝑈𝑖 and 𝑝 ∈ 𝜋−1(𝑥),

Ψ𝑖(𝑠𝑖(𝑥) ⋅ 𝜓𝑖(𝑝)) = (𝑥, 𝜓𝑖(𝑠𝑖(𝑥))𝜓𝑖(𝑝)) = (𝑥, 𝜓𝑖(𝑝)) = Ψ𝑖(𝑝),

and therefore we have that
𝑝 = 𝑠𝑖(𝑥) ⋅ 𝜓𝑖(𝑝).

Now if 𝑥 ∈ 𝑈𝑖𝑗 = 𝑈𝑖 ∩ 𝑈𝑗 , for all elements 𝑝 ∈ 𝜋−1(𝑥), we obtain for both sections

𝑠𝑖(𝑥) ⋅ 𝜓𝑖(𝑝) = 𝑝 = 𝑠𝑗(𝑥) ⋅ 𝜓𝑗(𝑝),
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and thus
𝑠𝑗(𝑥) = 𝑠𝑖(𝑥) ⋅ 𝜓𝑖(𝑝)𝜓𝑗(𝑝)−1.

But now, since the trivializations are𝐺-equivariant, 𝜓𝑖(𝑝 ⋅ 𝑔) = 𝜓𝑖(𝑝)𝑔, the product 𝜓𝑖(𝑝)𝜓𝑗(𝑝)−1 is
𝐺-invariant, and is precisely the transition function 𝑔𝑖𝑗 ∶ 𝑈𝑖𝑗 → 𝐺:

𝑔𝑖𝑗(𝑥) ∶= 𝜓𝑖(𝑝)𝜓𝑗(𝑝)−1.

We then conclude:
𝑠𝑗(𝑥) = 𝑠𝑖(𝑥) ⋅ 𝑔𝑖𝑗(𝑥).

See figure 2.

Figure 2: The transition functions 𝑔𝑖𝑗 relate the sections 𝑠𝑖, 𝑠𝑗 induced by the trivializations.

Now let 𝜔 ∈ Ω1(𝑃, 𝔤) be a connection. For each 𝑈𝑖, the pullback of 𝜔 by 𝑠𝑖 is again a 𝔤-valued
1-form on𝑈𝑖. We denote it by

𝒜𝑖 ∶= 𝑠∗𝑖𝜔
and call it the local gauge potential (in the gauge 𝑠𝑖). How do different local gauges relate to one
another?

Proposition 1.8 (Transformation of local potentials).
Let 𝜔 be a connection on 𝐺 ↪ 𝑃 𝜋→ 𝑀, and {𝑈𝑖}𝑖∈𝐽 a trivializing cover with induced sections
𝑠𝑖 ∶ 𝑈𝑖 → 𝑃, and transition maps 𝑔𝑖𝑗 ∶ 𝑈𝑖 ∩ 𝑈𝑗 → 𝐺. Let 𝒜𝑖 = 𝑠∗𝑖𝜔 be the local gauge
potentials. Then for all 𝑥 ∈ 𝑈𝑖𝑗 = 𝑈𝑖 ∩ 𝑈𝑗,

(𝒜𝑗)𝑥 = Ad𝑔𝑖𝑗(𝑥)−1 ∘(𝒜𝑖)𝑥 + (𝑔∗𝑖𝑗Θ)𝑥, (1)

where Θ is the Maurer-Cartan form of example 1.6.
We write this compactly as

𝒜𝑗 = Ad𝑔−1𝑖𝑗 𝒜𝑖 + 𝑔∗𝑖𝑗Θ.

Proof.— Let’s try to brute-force it first, and see what else we need. we have that

(𝒜𝑗)𝑥 = (𝑠∗𝑗 𝜔)𝑥 = 𝜔𝑠𝑗(𝑥) ∘ 𝑇𝑥𝑠𝑗 ,

so we need to find the expression for 𝑇𝑥𝑠𝑗 , preferably in terms of 𝑠𝑖. To do so, let 𝜎 ∶ 𝑃 × 𝐺 → 𝑃 be
the action, i.e. 𝜎(𝑝, 𝑔) = 𝑝 ⋅ 𝑔. Then for all 𝑥 ∈ 𝑈𝑖𝑗 we can write 𝑠𝑗(𝑥) as

𝑠𝑗(𝑥) = 𝑠𝑖(𝑥) ⋅ 𝑔𝑖𝑗(𝑥) = 𝜎(𝑠𝑖(𝑥), 𝑔𝑖𝑗(𝑥)) = (𝜎 ∘ (𝑠𝑖, 𝑔𝑖𝑗))(𝑥),

where we have (𝑠𝑗 , 𝑔𝑖𝑗) ∶ 𝑈 → 𝑃 ×𝑀 is defined in the natural way. This tells us that

𝑇𝑥𝑠𝑗 = 𝑇𝑥(𝜎 ∘ (𝑠𝑖, 𝑔𝑖𝑗)) = 𝑇(𝑠𝑗(𝑥),𝑔𝑖𝑗(𝑥))𝜎 ∘ 𝑇𝑥(𝑠𝑗 , 𝑔𝑖𝑗) = 𝑇(𝑠𝑗(𝑥),𝑔𝑖𝑗(𝑥))𝜎 ∘ (𝑇𝑥𝑠𝑗 , 𝑇𝑥𝑔𝑖𝑗).

Now we need to find the expression for 𝑇(𝑝,𝑔)𝜎. We proceed carefully, in parts, noting that 𝑇(𝑝,𝑔)(𝑃 ×
𝐺) ≅ 𝑇𝑝𝑃 ⊕ 𝑇𝑔𝐺. Let 𝑢 ∈ 𝑇𝑝𝑃, and 𝛾 an integral curve of 𝑢. Then we have that

𝑇(𝑝,𝑔)𝜎(𝑢, 0) =
d
d𝑡
|||𝑡=0

𝜎(𝛾(𝑡), 𝑔) = d
d𝑡
|||𝑡=0

𝛾(𝑡) ⋅ 𝑔 = d
d𝑡
|||𝑡=0

𝜎𝑔(𝛾(𝑡)) = 𝑇𝑝𝜎𝑔(𝑢).
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On the other hand, let 𝜉 ∈ 𝑇𝑔𝐺. Then we have thatΘ𝑔(𝜉) ∶= 𝑋 ∈ 𝔤 = 𝑇𝑒𝐺 is the (unique) element
of the Lie algebra that satisfies

d
d𝑡
|||𝑡=0

𝑔 exp(𝑡𝑋) = 𝑇𝑒𝐿𝑔(𝑋) = 𝜉,

so that 𝑡 ↦ 𝑔 exp(𝑡Θ𝑔(𝜉)) is an integral curve of 𝜉. Therefore

𝑇(𝑝,𝑔)𝜎(0, 𝜉) =
d
d𝑡
|||𝑡=0

𝜎(𝑝, 𝑔 exp(𝑡Θ𝑔(𝜉)))

= d
d𝑡
|||𝑡=0

𝑝 ⋅ 𝑔 exp(𝑡Θ𝑔(𝜉))

= d
d𝑡
|||𝑡=0

(𝑝 ⋅ 𝑔) ⋅ exp(𝑡Θ𝑔(𝜉))

= 𝑎𝑝⋅𝑔(Θ𝑔(𝜉)).

We put these two together, and obtain

𝑇(𝑝,𝑔)𝜎(𝑢, 𝜉) = 𝑇𝑝𝜎𝑔(𝑢) + 𝑎𝑝⋅𝑔(Θ𝑔(𝜉)).

Substituting in 𝑇𝑥𝑠𝑗 , and evaluating at some 𝑣 ∈ 𝑇𝑥𝑈𝑖𝑗 ,

𝑇𝑥𝑠𝑗(𝑣) = 𝑇(𝑠𝑖(𝑥),𝑔𝑖𝑗(𝑥))𝜎(𝑇𝑥𝑠𝑗(𝑣), 𝑇𝑥𝑔𝑖𝑗(𝑣)) = 𝑇𝑠𝑖(𝑥)𝜎𝑔𝑖𝑗(𝑥)(𝑇𝑥𝑠𝑖(𝑣)) + 𝑎𝑠𝑖(𝑥)⋅𝑔𝑖𝑗(𝑥)(Θ𝑔𝑖𝑗(𝑥)(𝑇𝑥𝑔𝑖𝑗(𝑣))).
= 𝑇𝑠𝑖(𝑥)𝜎𝑔𝑖𝑗(𝑥)(𝑇𝑥𝑠𝑖(𝑣)) + 𝑎𝑠𝑗(𝑥)((𝑔∗𝑖𝑗Θ)𝑥(𝑣)).

Now we evaluate 𝜔𝑠𝑗(𝑥) on 𝑇𝑥𝑠𝑗(𝑣). By definition, we have

𝜔𝑠𝑗(𝑥)(𝑎𝑠𝑖(𝑥)((𝑔∗𝑖𝑗Θ)𝑥(𝑣))) = (𝑔∗𝑖𝑗Θ)𝑥(𝑣).

We have to do a little bit more work for the other term. We will simply write 𝑠𝑗 , 𝑔𝑖𝑗 , 𝑠𝑗 for 𝑠𝑗(𝑥), etc., to
avoid the clutter. Then we have

𝜔𝑠𝑗 (𝑇𝑥𝑠𝑗(𝑢)) = 𝜔𝑠𝑗 (𝑇𝑠𝑖𝜎𝑔𝑖𝑗 (𝑇𝑥𝑠𝑖(𝑢)))
= 𝜔𝑠𝑖𝑔𝑖𝑗 (𝑇𝑠𝑖𝜎𝑔𝑖𝑗 (𝑇𝑥𝑠𝑖(𝑢)))
= (𝜎∗𝑔𝑖𝑗𝜔)𝑠𝑖 (𝑇𝑥𝑠𝑖(𝑢))
= Ad𝑔−1𝑖𝑗 (𝜔𝑠𝑖 (𝑇𝑥𝑠𝑖(𝑢)))
= Ad𝑔−1𝑖𝑗 ((𝑠

∗
𝑖𝜔)𝑥(𝑢))

= (Ad𝑔𝑖𝑗(𝑥)−1 ∘ (𝒜𝑖)𝑥)(𝑢).

Placing these two last results together, we obtain the result. ■

In the previous proof we calculated the differential of the group action 𝜎 ∶ 𝑃 × 𝐺 → 𝑃. We will use it
a bit more so let’s collect it in a lemma.

Lemma 1.9 (Differential of the group action).
Let 𝑃 → 𝑀 be a principal 𝐺-bundle and denote by 𝜎 ∶ 𝑃 × 𝐺 → 𝑃 the right action. Its
differential is given by

𝑇(𝑝,𝑔)𝜎(𝑢, 𝜉) = 𝑇𝑝𝜎𝑔(𝑢) + 𝑎𝑝⋅𝑔(Θ𝑔(𝜉)),

for all 𝑢 ∈ 𝑇𝑝𝑃 and 𝜉 ∈ 𝑇𝑔𝐺. Here, 𝜎𝑔 ∶ 𝑃 → 𝑃 is right multiplication by 𝑔, 𝑎𝑝 is the
infinitesimal action on 𝑝, and Θ is the Maurer-Cartan form.

If the Lie group𝐺 is amatrix Lie group, then this result takes a particularly simple form. In amatrix
Lie group, the adjoint representation is simply

Ad𝑔(𝑋) = 𝑔𝑋𝑔−1.
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The pullback of the Maurer-Cartan form also has a simple form. Let 𝑋 ∈ 𝑇𝑥𝑀 be a tangent vector
with integral curve 𝛾. Then if 𝑔 ∶ 𝑈 ⊆ 𝑀 → 𝐺 is a smooth map,

(𝑔∗Θ)𝑥(𝑋) = Θ𝑔(𝑥)(𝑇𝑥𝑔(𝑋))
= 𝑇𝑔(𝑥)𝐿𝑔(𝑥)−1𝑇𝑥𝑔(𝑋)
= 𝑇𝑥(𝐿𝑔(𝑥)−1 ∘ 𝑔)(𝑋)

= d
d𝑡
|||𝑡=0

𝑔(𝑥)−1𝑔(𝛾(𝑡))

= 𝑔(𝑥)−1 d
d𝑡
|||𝑡=0

𝑔(𝛾(𝑡))

= 𝑔(𝑥)−1(d𝑔)𝑥(𝑋).

Therefore, the gauge transformation of the gauge potential for a matrix Lie group is

𝒜𝑗 = 𝑔−1𝑖𝑗 𝒜𝑖𝑔𝑖𝑗 + 𝑔−1𝑖𝑗 d𝑔𝑖𝑗 .

This proposition, in physics, is often called gauge transformationof a potential. In physicswemostly
workwith the local potentials, notwith the global connection in the total space𝑃, andwedefine a gauge
potential as some object that under a certain set of (local) transformations, transforms as in equation (1).
Indeed, the following result tells us that this information is sufficient to reconstruct the global object.
The proof is a bit tedious and not particularly enlightening (we did a lot of the work in previous propo-
sition).

Proposition 1.10 (Physicists did nothing wrong).
Let 𝐺 ↪ 𝑃 𝜋→ 𝑀 be a principal 𝐺-bundle, and {(𝑈𝑖, Ψ𝑖)}𝑖∈𝐽 a trivializing cover with induced
sections 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃. Suppose that for each 𝑈𝑖, there is a 𝔤-valued 1-form 𝒜𝑖 ∈ Ω1(𝑈𝑖, 𝔤), such
that for all 𝑥 ∈ 𝑈𝑖 ∩ 𝑈𝑗,

(𝒜𝑗)𝑥 = Ad𝑔𝑖𝑗(𝑥)−1 ∘ (𝒜𝑖)𝑥 + 𝑔∗𝑖𝑗Θ𝑥.

Then there exists a unique connection 𝜔 ∈ Ω1(𝑃, 𝔤) such that for all 𝑖 ∈ 𝐽,

𝑠∗𝑖𝜔 = 𝒜𝑖.

1.4 Horizontal lifts, parallel transport and holonomy
Oncewe have a connection, we now have a preferred way of lifting vectors from𝑇𝑀 to𝑇𝑃. Recall that
a vector 𝑌 ∈ 𝑇𝑝𝑃 is a lift of 𝑋 ∈ 𝑇𝜋(𝑝)𝑀 if 𝑇𝑝𝜋(𝑌) = 𝑋 . In absence of a connection, there are many
different choices of lifts of a vector, and any two choices differ by a vertical vector. That is, if 𝑌, 𝑌 ′ are
lifts of 𝑋 , then 𝑌 − 𝑌 ′ is vertical. Once we have a connection, we can define the horizontal lift (with
respect to a connection𝐻) of 𝑋 ∈ 𝑇𝑥𝑀 as the horizontal component of any lift of 𝑋 . This definition
is, of course, independent of the choice of lift, since any two differ by a vertical vector, whose horizontal
component vanishes. Denoting the horizontal component of a vector by 𝑌𝐻 , we have then

𝑌𝐻 = (𝑌 ′ + (𝑌 − 𝑌 ′))𝐻 = (𝑌 ′)𝐻 .

Similarly, we can lift vector fields by lifting them in a pointwise fashion.

Definition 1.11 (Horizontal lift of vector fields).
Let 𝑋 ∈ 𝔛(𝑀) be a vector field and 𝐻 ⊂ 𝑇𝑃 an Ehresmann connection on 𝑃. We define the
horizontal lift of 𝑋 as the vector field 𝑌 ∈ 𝔛(𝑃), which satisfies 𝜋∗𝑌 = 𝑋 and 𝑌𝑝 ∈ 𝐻𝑝 for
all 𝑝 ∈ 𝑃.

If𝐻 is a principal connection, then the horizontal lift𝑌 of a vector field𝑋 is𝐺-invariant, since𝑇𝑝𝜎𝑔(𝑌𝑝)
is a horizontal vector that projects to 𝑋𝜋(𝑝). Therefore we have that

𝜎𝑔∗𝑌 = 𝑌.

We also expect a horizontal lift to commute with (some) vertical fields, since, in a sketchy intuitive sense,
we define these two directions as independent. Actually, this is true of any𝐺-invariant field.
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Lemma 1.12 (𝐺-invariant fields commute with fundamental vector fields).
Let 𝑋♯ ∈ 𝔛(𝑃) be the fundamental vector field associated to 𝑋 ∈ 𝔤, and let 𝑌 ∈ 𝔛(𝑃) be a
𝐺-invariant field, i.e. 𝑅𝑔∗𝑌 = 𝑌 . Then [𝑋, 𝑌] = 0.

Proof.— LetΦ𝑡 be the flow of 𝑋♯. It is straightforward to check that

Φ𝑡(𝑝) = 𝑝 ⋅ exp(𝑡𝑋) = 𝑅𝑔𝑡(𝑝),
where we denote 𝑔𝑡 = exp(𝑡𝑋). Then

[𝑋, 𝑌]𝑝 =
d
d𝑡
|||𝑡=0

𝑇Φ𝑡(𝑝)Φ−𝑡(𝑌Φ𝑡(𝑝)) =
d
d𝑡
|||𝑡=0

𝑇𝑝⋅𝑔𝑡𝑅𝑔−1𝑡 (𝑌𝑝⋅𝑔𝑡) =
d
d𝑡
|||𝑡=0

𝑌𝑝 = 0. ■

Now suppose that we have a curve 𝛾 ∶ [0, 1] → 𝑀. At each point over the curve, we have a vector
̇𝛾(𝑡) ∈ 𝑇𝛾(𝑡)𝑀, which we can lift we can lift to the fiber above 𝛾(𝑡). So if we choose a starting point
𝑝0 ∈ 𝜋−1(𝛾(0)), we can find an integral curve along all these lifted vectors on the fibers over the curve
𝛾. In the end we obtain a curve ̃𝛾 ∶ [0, 1] → 𝑃 which satisfies𝜋 ∘ ̃𝛾 = 𝛾, ̃𝛾(0) = 𝑝0, and ̇̃𝛾(𝑡) ∈ 𝐻 ̃𝛾(𝑡)
for all 𝑡. We call it a horizontal lift of 𝛾, and it is unique:

Proposition 1.13 (Existence and uniqueness of horizontal lifts of curves).
Let 𝜔 be a connection on the 𝐺-bundle 𝑃 → 𝑀, and 𝛾 ∶ [0, 1] → 𝑀 a piecewise smooth curve.
Given a point 𝑝 ∈ 𝜋−1(𝛾(0)), there exists a unique curve ̃𝛾 ∶ [0, 1] → 𝑃, called the horizontal
lift of 𝛾, satisfying

1. ̃𝛾 is a lift of 𝛾: 𝜋 ∘ ̃𝛾 = 𝛾.

2. ̃𝛾 is horizontal: ̇̃𝛾(𝑡) ∈ 𝐻�̃�(𝑡) for all 𝑡 ∈ [0, 1].

3. ̃𝛾(0) = 𝑝.

Proof.— There’s two ways to prove this: The first way is in the spirit of the discussion above. We have
a vector field ̃𝑋 on the bundle 𝑃|𝛾([0,1]),3 where for𝑝 ∈ 𝜋−1(𝛾(𝑡)), ̃𝑋𝑝 is the horizontal lift of ̇𝛾(𝑡) to𝑝.
Then ̃𝛾 is the integral curve of ̃𝑋 starting at the prescribed 𝑝0 ∈ 𝜋−1(𝛾(0)). Technically these integral
curves only exist locally but since [0, 1] is compact we can glue a finite number of them together and
be done.

The secondway follows [Bär11, Lemma 2.6.1], where we look at a local problem in terms of sections
and an ODE. We’ll go through it because y’all know I love me some local descriptions of things.

Suppose that the image 𝛾([0, 1]) is contained in a single open set𝑈 that trivializes the bundle. In
general the image is compact, so it will be contained in a union of finitely many of these. So there is an
associated section 𝑠 ∶ 𝑈 → 𝑃. Any lift ̃𝛾will be of the form

̃𝛾(𝑡) = 𝑠(𝛾(𝑡)) ⋅ 𝑔(𝑡),
for some unique map 𝑔[0, 1] → 𝐺. The condition for ̃𝛾 to be a horizontal lift is that ̇̃𝛾(𝑡) ∈ ker𝜔�̃�(𝑡)
for all 𝑡.

First, we need to see what ̇̃𝛾 is. For simplicity, write 𝑝(𝑡) ∶= 𝑠(𝛾(𝑡)).

̇̃𝛾(𝑡) = d
d𝑡𝑝(𝑡) ⋅ 𝑔(𝑡)

= d
d𝑡𝜎(𝑝(𝑡), 𝑔(𝑡))

= 𝑇(𝑝(𝑡),𝑔(𝑡))𝜎 ( ̇𝑝(𝑡), ̇𝑔(𝑡))
= 𝑇𝑝(𝑡)𝜎𝑔(𝑡)( ̇𝑝(𝑡)) + 𝑎𝑝(𝑡)⋅𝑔(𝑡)(Θ𝑔(𝑡)( ̇𝑔(𝑡)).

Here we used the differential of 𝜎 from lemma 1.9. Now we apply 𝜔�̃�(𝑡). Recall that 𝜔𝑝(𝑎𝑝(𝜉)) = 𝜉
by definition, so

𝜔�̃�(𝑡)( ̇̃𝛾(𝑡)) = 𝜔𝑝(𝑡)⋅𝑔(𝑡) (𝑇𝑝(𝑡)𝜎𝑔(𝑡)( ̇𝑝(𝑡)) + 𝑎𝑝(𝑡)⋅𝑔(𝑡)(Θ𝑔(𝑡)( ̇𝑔(𝑡)))
= 𝜔𝑝(𝑡)⋅𝑔(𝑡) (𝑇𝑝(𝑡)𝜎𝑔(𝑡)( ̇𝑝(𝑡))) + Θ𝑔(𝑡)( ̇𝑔(𝑡))
= (𝜎∗𝑔(𝑡)𝜔)𝑝(𝑡)( ̇𝑝(𝑡)) + Θ𝑔(𝑡)( ̇𝑔(𝑡))
= Ad𝑔(𝑡)−1 𝜔𝑝(𝑡)( ̇𝑝(𝑡)) + Θ𝑔(𝑡)( ̇𝑔(𝑡)).

3We could talk of the pullback bundle 𝛾∗𝑃 → [0, 1] to be evenmore technical.

9



Now recall that Ad𝑔 is the derivative at 𝑒 of the conjugationmapConj𝑔(ℎ) = 𝑔ℎ𝑔−1, which is precisely
𝐿𝑔 ∘ 𝑅𝑔−1 . Also recall thatΘ𝑔 = 𝑇𝑔𝐿𝑔−1 . These two things, put together give us

𝜔�̃�(𝑡)( ̇̃𝛾(𝑡)) = 𝑇𝑒(𝐿𝑔(𝑡)−1 ∘ 𝑅𝑔(𝑡))𝜔𝑝(𝑡)( ̇𝑝(𝑡)) + 𝑇𝑔(𝑡)𝐿𝑔(𝑡)−1( ̇𝑔(𝑡))
= 𝑇𝑔(𝑡)𝐿𝑔(𝑡)−1 (𝑇𝑒𝑅𝑔(𝑡)𝜔𝑝(𝑡)( ̇𝑝(𝑡)) + ̇𝑔(𝑡)) .

Since ̃𝛾 is horizontal, then thismust be precisely zero. But since𝑇𝑔(𝑡)𝐿𝑔(𝑡)−1 is an isomorphism (because
left multiplication is a diffeomorphism), then the condition for ̃𝛾 to be a horizontal lift is

𝑇𝑒𝑅𝑔(𝑡)𝜔𝑝(𝑡)( ̇𝑝(𝑡)) + ̇𝑔(𝑡) = 0.

Finally, let’s rewrite 𝑝(𝑡) = (𝑠 ∘ 𝛾)(𝑡). Then ̇𝑝(𝑡) = 𝑇𝛾(𝑡)𝑠( ̇𝛾(𝑡)), and this becomes

𝑇𝑒𝑅𝑔(𝑡)(𝑠∗𝜔)𝛾(𝑡)( ̇𝛾(𝑡)) + ̇𝑔(𝑡) = 0.

This is a first order ordinary differential equation for𝑔(𝑡), with a given initial condition, so it determines
𝑔(𝑡) uniquely. ■

Note that in terms of the local potential𝒜 = 𝑠∗𝜔, the local condition for ̃𝛾(𝑡) to be a horizontal lift is

𝑇𝑒𝑅𝑔(𝑡)𝒜𝛾(𝑡)( ̇𝛾(𝑡)) + ̇𝑔(𝑡) = 0.

Even more, if𝐺 is a matrix Lie group, then right multiplication is a linear map so this becomes

̇𝑔(𝑡) = −𝒜𝛾(𝑡)( ̇𝛾(𝑡))𝑔(𝑡).

If the exponential map is surjective, then 𝑔(𝑡) = exp(𝜉(𝑡)), and this equation becomes

̇𝜉(𝑡) = −𝒜𝛾(𝑡)( ̇𝛾(𝑡)),

which has a solution

𝜉(𝑡) = 𝜉(0) −∫
𝑡

0
𝒜𝛾(𝜏)( ̇𝛾(𝜏)) d𝜏 = 𝜉(0) −∫

𝛾
𝒜.

Given a curve 𝛾 ∶ [0, 1] → 𝑀, if we write 𝑥0 = 𝛾(0) and 𝑥1 = 𝛾(1), then we have a map
PT𝛾 ∶ 𝜋−1(𝑥0) → 𝜋−1(𝑥1), called parallel transport along 𝛾, where for 𝑝 ∈ 𝜋−1(𝑥0), its image
PT𝛾(𝑝) is the endpoint of the horizontal lift of 𝛾with initial value 𝑝.

Note that if ̃𝛾 is the horizontal lift starting at 𝑝, then for any 𝑔 ∈ 𝐺, ̃𝛾 ⋅ 𝑔 is a horizontal lift starting
at 𝑝 ⋅ 𝑔. This tells us that

PT𝛾(𝑝 ⋅ 𝑔) = PT𝛾(𝑝) ⋅ 𝑔.
Inparticular, since the actionof𝐺 is transitive on the fibers of thebundle, thenPT isnecessarily bijective.
Furthermore, if we choose a “reference point” 𝑝 ∈ 𝜋−1(𝑥0), we have an isomorphism 𝜋−1(𝑥0) ≅ 𝐺
by 𝑝 ⋅ 𝑔 ↦ 𝑔 and similarly for 𝜋−1(𝑥1). Then under these isomorphisms, parallel transport PT𝛾 ∶
𝜋−1(𝑥0) → 𝜋−1(𝑥1) is a “group isomorphism”.

More specifically, suppose that 𝛾 is a loop based at 𝑥0. Then parallel transport is an isomorphism
PT𝛾 ∶ 𝜋−1(𝑥0) → 𝜋−1(𝑥0), and it determines a unique map 𝑔𝛾 ∶ 𝜋−1(𝑥0) → 𝐺 which satisfies

PT𝛾(𝑝) ∶= 𝑝 ⋅ 𝑔𝛾(𝑝).

On one hand, we have for any ℎ ∈ 𝐺,

PT𝛾(𝑝 ⋅ 𝑔) = (𝑝 ⋅ ℎ) ⋅ 𝑔𝛾(𝑝 ⋅ ℎ),

but on the other hand
PT𝛾(𝑝 ⋅ 𝑔) = PT𝛾(𝑝) ⋅ ℎ,

which implies that the map 𝑔𝛾 satisfies

𝑔𝛾(𝑝 ⋅ ℎ) = ℎ−1𝑔(𝑝)ℎ.

This means that the loop 𝛾 determines a conjugation class of𝐺, as

𝛾 ↦ 𝑔𝛾(𝜋−1𝑥0) = {ℎ−1𝑔𝛾(𝑝)ℎ ∶ ℎ ∈ 𝐺} .
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2 Curvature
2.1 The curvature 2-form and structure equation

Let 𝐺 ↪ 𝑃 𝜋→ 𝑀 be a principal 𝐺-bundle, and 𝔤 be the Lie algebra of 𝐺. For any 𝔤-valued 𝑘-form
𝜔 ∈ Ω𝑘(𝑃, 𝔤), we define d𝜔 ∈ Ω𝑘+1(𝑃, 𝔤) as follows: choose a basis {𝑒1, … , 𝑒𝑚} of 𝔤. Then we can
write

𝜔 =
𝑚
∑
𝑎=1

𝜔𝑎𝑒𝑎,

where each 𝜔𝑎 ∈ Ω𝑘(𝑃). Then we define

d𝜔 ∶=
𝑚
∑
𝑎=1

d𝜔𝑎𝑒𝑎.

This definition is independent of the choice of basis of 𝔤, as can be readily checked.
In order to define curvature, we also need another definition.

Definition 2.1 (Bracket of valued forms).
Let 𝛼 ∈ Ω𝑘(𝑃, 𝔤) and 𝛽 ∈ Ω𝑙(𝑃, 𝔤). We define a (𝑘 + 𝑙)-form [𝛼, 𝛽] ∈ Ω𝑘+𝑙(𝑃, 𝔤) in terms
of a basis {𝑒1, … , 𝑒𝑚} of 𝔤 as

[𝛼, 𝛽] = ∑
𝑎,𝑏

𝛼𝑎 ∧ 𝛽𝑏[𝑒𝑎, 𝑒𝑏].

This definition is independent of the choice of basis (and in some references it is written as 𝛼 ∧ 𝛽,
[𝛼 ∧ 𝛽], or 𝛼 ∧[,] 𝛽...).

In the case where 𝛼, 𝛽 ∈ Ω1(𝑃, 𝔤), the definition becomes

[𝛼, 𝛽](𝑋, 𝑌) = ∑
𝑎,𝑏
(𝛼𝑎 ∧ 𝛽𝑏)(𝑋, 𝑌)[𝑒𝑎, 𝑒𝑏]

= ∑
𝑎,𝑏
(𝛼𝑎(𝑋)𝛽𝑏(𝑌) − 𝛼𝑎(𝑌)𝛽𝑏(𝑋))[𝑒𝑎, 𝑒𝑏]

= ∑
𝑎,𝑏
[𝛼𝑎(𝑋)𝑒𝑎, 𝛽𝑏(𝑌)𝑒𝑏] − [𝛼𝑎(𝑌)𝑒𝑎, 𝛽𝑏(𝑋)𝑒𝑏]

= [𝛼(𝑋), 𝛽(𝑌)] − [𝛼(𝑌), 𝛽(𝑋)].

In general, we have a way to evaluate the bracket of forms:

Lemma 2.2 (Evaluation of bracket).
Let 𝛼 ∈ Ω𝑖(𝑃, 𝔤) and 𝛽 ∈ Ω𝑗(𝑃, 𝔤). Then for vectors 𝑋1, … , 𝑋𝑖+𝑗:

[𝛼, 𝛽](𝑋1, … , 𝑋𝑖+𝑗) =
1
𝑖!𝑗! ∑

𝜎∈𝔖𝑘

sgn(𝜎)[𝛼(𝑋𝜎(1), … , 𝑋𝜎(𝑖)), 𝛽(𝑋𝜎(𝑖+1), … , 𝑋𝜎(𝑖+𝑗))].

Proof.— The proof is a straightforward evaluation and application of the definition of thewedge prod-
uct. ■

Now we define the curvature 2-form of a connection.

Definition 2.3 (Curvature 2-form).
Let 𝜔 be a connection on 𝐺 ↪ 𝑃 𝜋→ 𝑀. The curvature of 𝜔 is a 𝔤-valued 2-formΩ ∈ Ω2(𝑃, 𝔤)
defined as

Ω = d𝜔 + 1
2[𝜔, 𝜔]. (2)

Equation (2) is called the Cartan structure equation.

Now let’s do an example that comes with a bit of motivation.
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Example 2.4 (Curvature of the Maurer-Cartan form).
Recall that for a Lie group 𝐺 (which we see as a 𝐺-bundle over a one-point space), we have a
canonical connectionΘ on𝐺, called theMaurer-Cartan form (see example 1.6), given pointwise
as

Θ𝑔 = 𝑇𝑔(𝐿𝑔−1).
The Maurer-Cartan form is also left-invariant,

(𝐿∗𝑔Θ)ℎ = Θ𝑔ℎ ∘ 𝑇ℎ𝐿𝑔 = 𝑇𝑔ℎ𝐿(𝑔ℎ)−1𝑇ℎ𝐿𝑔 = 𝑇ℎ(𝐿(𝑔ℎ)−1 ∘ 𝐿𝑔) = 𝑇ℎ𝐿ℎ−1 = Θℎ,

and so it is uniquely defined by its value at the identity 𝑒 ∈ 𝐺. Now fix a basis {𝑒1, … , 𝑒𝑚} of 𝔤,
so that the Maurer-Cartan form can be written as

Θ = ∑
𝑎
Θ𝑎𝑒𝑎,

where each componentΘ𝑎 ∈ Ω1(𝐺) is a usual 1-form. If we write 𝜉𝑎 as the left-invariant field
generated by 𝑒𝑎;

𝜉𝑎(𝑔) ∶= 𝑇𝑒𝐿𝑔(𝑒𝑎),
then at each point 𝑔 ∈ 𝐺, the set {𝜉1(𝑔), … , 𝜉𝑚(𝑔)} are a frame for 𝑇𝑔𝐺, and furthermore, we
have that

Θ𝑔(𝜉𝑎(𝑔)) = 𝑒𝑎.
But on the other hand, we have

Θ𝑔(𝜉𝑎(𝑔)) = ∑
𝑏
Θ𝑏
𝑔(𝜉𝑎(𝑔))𝑒𝑎,

which implies that for all 𝑔,Θ𝑏
𝑔(𝜉𝑎(𝑔)) = 𝛿𝑏𝑎 , and so {Θ1, … , Θ𝑚} forms a coframe of 𝑇∗

𝑔 𝐺 that
is dual to {𝜉1, … , 𝜉𝑚}. Now we have that

dΘ𝑎(𝜉𝑏, 𝜉𝑐) = 𝜉𝑏(Θ𝑎(𝜉𝑐))−𝜉𝑐(Θ𝑎(𝜉𝑏))−Θ𝑎([𝜉𝑏, 𝜉𝑐]) = −Θ𝑎
𝑒 ([𝑒𝑏, 𝑒𝑐]) = −[𝑒𝑏, 𝑒𝑐]𝑎 = −𝐶𝑎

𝑏𝑐,

where [𝑒𝑏, 𝑒𝑐]𝑎 is the 𝑎-th component of [𝑒𝑏, 𝑒𝑐], which is precisely the definition of the struc-
ture coefficients 𝐶𝑎

𝑏𝑐. Now since the 𝜉𝑎 vectors form a frame of 𝑇𝐺, whose dual coframe is
precisely theΘ𝑎 forms, this tells us that

dΘ𝑎 = −12 ∑𝑏,𝑐
𝐶𝑎
𝑏𝑐Θ𝑏 ∧ Θ𝑐,

and thus,

dΘ = ∑
𝑎

dΘ𝑎𝑒𝑎 = −12 ∑
𝑎,𝑏,𝑐

𝐶𝑎
𝑏𝑐Θ𝑏 ∧ Θ𝑐𝑒𝑎 = −12 ∑𝑏,𝑐

Θ𝑏 ∧ Θ𝑐[𝑒𝑏, 𝑒𝑐] = −12[Θ,Θ].

Therefore, conclude that
Ω = dΘ + 1

2[Θ,Θ] = 0.

We now see one of the most (if not the most) important properties of the curvature 2-form:

Proposition 2.5 (Curvature is basic).
Let 𝜔 be a connection on 𝐺 ↪ 𝑃 𝜋→ 𝑀 and Ω its curvature. Then Ω ∈ Ω2

bas(𝑃, 𝔤), that is,

1. If 𝑋 is a vertical field, then 𝜄𝑋Ω = 0, i.e. Ω is horizontal; and

2. For all 𝑔 ∈ 𝐺, 𝜎∗𝑔Ω = Ad𝑔−1 ∘Ω, i.e. Ω is pseudotensoriala of type Ad.
athis is sometimes called𝐺-invariance, or𝐺-equivariance, but let’s avoid that discussion.
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Proof.— First, let’s see thatΩ is pseudotensorial of type Ad:

𝜎∗𝑔Ω = 𝜎∗𝑔d𝜔 +
1
2𝜎

∗
𝑔 [𝜔, 𝜔] = d𝜎∗𝑔𝜔 +

1
2[𝜎

∗
𝑔𝜔, 𝜎∗𝑔𝜔] = d(Ad𝑔−1 ∘𝜔) +

1
2[Ad𝑔−1 ∘𝜔,Ad𝑔−1 ∘𝜔].

The occurrences of Ad𝑔−1 in this previous expression may seem like there’s some care required with d
and the commutator, but by definition, Ad𝑔−1 acts on the element of 𝔤 that 𝜔 outputs. We can see
this more clearly when we choose a basis {𝑒1, … , 𝑒𝑚} of 𝔤 and write 𝜔 = ∑𝑎 𝜔𝑎𝑒𝑎. When we write
Ad𝑔−1 ∘𝜔, this actually stands for

Ad𝑔−1 ∘𝜔 = ∑
𝑎
𝜔𝑎 Ad𝑔−1(𝑒𝑎),

so that the terms in the previous expression are

d(Ad𝑔−1 ∘∑
𝑎
𝜔𝑎𝑒𝑎) = ∑

𝑎
d𝜔𝑎 Ad𝑔−1(𝑒𝑎) = Ad𝑔−1 ∘d𝜔.

Now we consider the case of the bracket. Since Ad𝑔 = 𝑇𝑒𝐶𝑔 is the differential of a diffeomorphism, it
is a pushworward evaluated at 𝑒 and thus it distributes into the Lie bracket of vector fields

Ad𝑔[𝑋𝑒, 𝑌𝑒] = (Conj𝑔∗[𝑋, 𝑌])𝑒
= [Conj𝑔∗ 𝑋,Conj𝑔∗ 𝑌]𝑒
= [Ad𝑔(𝑋𝑒),Ad𝑔(𝑌𝑒)].

Then we have
(𝜎∗𝑔Ω) = Ad𝑔−1 (d𝜔 +

1
2[𝜔, 𝜔]) = Ad𝑔−1 ∘Ω.

We now need to show thatΩ is horizontal. Since we have a connection, we can decompose any vector
𝑣 ∈ 𝑇𝑝𝑃 in a vertical and horizontal part, 𝑣 = 𝑣𝑉 +𝑣𝐻 . Then the action onΩ on a pair 𝑢, 𝑣 ∈ 𝑇𝑝𝑃 is

Ω𝑝(𝑢, 𝑣) = Ω𝑝(𝑢𝑉 +𝑢𝐻 , 𝑣𝑉 +𝑣𝐻) = Ω𝑝(𝑢𝑉 , 𝑣𝑉 )+Ω𝑝(𝑢𝑉 , 𝑣𝐻)+Ω𝑝(𝑢𝐻 , 𝑣𝑉 )+Ω𝑝(𝑢𝐻 , 𝑣𝐻),

and thus, it suffices to consider two cases: when both 𝑢 and 𝑣 are vertical, or when 𝑢 is vertical and 𝑣 is
horizontal.

Let’s begin with with the case where both 𝑢 and 𝑣 are vertical, so that 𝑢 = 𝑎𝑝(𝑋) and 𝑣 = 𝑎𝑝(𝑌)
for some 𝑋, 𝑌 ∈ 𝔤 (namely 𝑋 = 𝜔𝑝(𝑢) and 𝑌 = 𝜔𝑝(𝑣)). If we write 𝑋♯, 𝑌 ♯ for the fundamental
vector fields associated to 𝑋, 𝑌 , given by 𝑋♯

𝑝 = 𝑎𝑝(𝑋) = 𝜎𝑝∗(𝑋) (and same for 𝑌 ), we have then that

Ω𝑝(𝑢, 𝑣) = d𝜔𝑝(𝑢, 𝑣) +
1
2[𝜔, 𝜔](𝑢, 𝑣)

= 𝑢(𝜔(𝑌 ♯)) − 𝑣(𝜔(𝑋♯)) − 𝜔([𝑢, 𝑣]) + [𝜔(𝑢), 𝜔(𝑣)].

But 𝜔(𝑋♯) = 𝑋 and 𝜔(𝑌 ♯) = 𝑌 are constant, so

Ω𝑝(𝑢, 𝑣) = −𝜔([𝑢, 𝑣]) + [𝑋, 𝑌].

Finally, we see that

[𝑢, 𝑣] = [𝑋♯, 𝑌 ♯]𝑝 = [𝜎𝑝∗𝑋, 𝜎𝑝∗𝑌]𝑝 = 𝜎𝑝∗([𝑋, 𝑌]𝑒) = 𝑎𝑝([𝑋, 𝑌]),

so 𝜔([𝑢, 𝑣]) = [𝑋, 𝑌], and thus
Ω𝑝(𝑢, 𝑣) = 0.

Now let’s consider the case where 𝑢 is vertical and 𝑣 is horizontal. Again, let 𝑋 = 𝜔𝑝(𝑢) ∈ 𝔤, and
𝑋♯ be the fundamental vector field associated to 𝑋 , so that 𝑋♯

𝑝 = 𝑢; and let 𝜈 be a horizontal field such
that 𝜈𝑝 = 𝑣. We then have

Ω𝑝(𝑢, 𝑣) = d𝜔𝑝(𝑢, 𝑣) +
1
2[𝜔, 𝜔](𝑢, 𝑣)

= 𝑢(𝜔(𝜈)) − 𝑣(𝜔(𝑋♯)) − 𝜔([𝑢, 𝑣]) + [𝜔(𝑢), 𝜔(𝑣)]
= −𝜔([𝑢, 𝑣]).
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Now it suffices to show that [𝑢, 𝑣] is horizontal if 𝑣 is horizontal and 𝑢 is vertical. First, we have that
the flow of the fundamental vector field 𝑋♯ is given by

Φ𝑡(𝑝) = 𝑝 ⋅ exp(𝑡𝑋),
as can be readily checked. Then

[𝑢, 𝑣] = d
d𝑡
|||𝑡=0

(Φ−𝑡∗(𝜈))𝑝 =
d
d𝑡
|||𝑡=0

𝑇Φ𝑡(𝑝)Φ−𝑡(𝜈Φ𝑡(𝑝))

If we write 𝑔𝑡 = exp(𝑡𝑋), then it is clear thatΦ𝑡(𝑝) = 𝜎𝑔𝑡(𝑝), so

[𝑢, 𝑣] = d
d𝑡
|||𝑡=0

𝑇Φ𝑡(𝑝)Φ−𝑡(𝜈Φ𝑡(𝑝)) =
d
d𝑡
|||𝑡=0

𝑇𝑝⋅𝑔𝑡𝜎𝑔−1𝑡 (𝜈𝑝⋅𝑔𝑡).

However, we know that (𝜎𝑔∗)(𝑣) is horizontal for all 𝑔 if 𝑣 is horizontal, and thus we obtain that

𝑇𝑝⋅𝑔𝑡𝜎𝑔−1𝑡 (𝜈𝑝⋅𝑔𝑡) ∈ 𝐻𝑝 for all 𝑡,

and so [𝑢, 𝑣] is horizontal as well. Therefore 𝜔([𝑢, 𝑣]) = 0, and our result is proved. ■
SinceΩ is horizontal, its values are uniquely determined by the horizontal components of the vectors
that it is evaluated at. The following corollary is often given as the definition of the curvature form:

Corollary 2.6.
Let 𝜔 be a connection and Ω its curvature. Then for all 𝑢, 𝑣 ∈ 𝑇𝑃:

Ω(𝑢, 𝑣) = d𝜔(𝑢𝐻 , 𝑣𝐻),

where 𝑢𝐻 , 𝑣𝐻 are the horizontal components of 𝑢, 𝑣, determined by 𝜔.

2.2 Local expressions (Curvature Edition)
Again, let’s see what the curvature looks like once we take trivializations. Let {𝑈𝑖}𝑖∈𝐼 be a trivializing
cover with local gauges 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃, and with gauge transformations 𝑔𝑖𝑗 ∶ 𝑈𝑖 ∩ 𝑈𝑗 → 𝐺, satisfying
𝑠𝑗 = 𝑠𝑖 ⋅ 𝑔𝑖𝑗 . Let 𝜔 ∈ Ω1(𝑃, 𝔤) be a connection on 𝑃 with curvature Ω ∈ Ω2(𝑃, 𝔤). For each local
gauge, define the gauge field strengthsℱ𝑖 ∈ Ω2(𝑈𝑖, 𝔤) as

ℱ𝑖 ∶= 𝑠∗𝑖Ω.
From the Cartan structure equation (equation (2)), we immediately obtain

ℱ𝑖 = d𝒜𝑖 +
1
2[𝒜𝑖, 𝒜𝑖],

where𝒜𝑖 = 𝑠∗𝑖𝜔 are the local gauge potentials.
Again, how do these relate to one another? Let 𝑋, 𝑌 ∈ 𝑇𝑥𝑀 be tangent vectors. Then, since the

curvatureΩ is a horizontal form,

ℱ𝑗,𝑥(𝑋, 𝑌) = Ω𝑠𝑗(𝑥)(𝑇𝑥𝑠𝑗(𝑋), 𝑇𝑥𝑠𝑗(𝑌)) = Ω𝑠𝑗(𝑥)(𝑇𝑥𝑠𝑗(𝑋)𝐻 , 𝑇𝑥𝑠𝑗(𝑌)𝐻).

In the proof of proposition 1.8, we showed that the differential 𝑇𝑥𝑠𝑗 is

𝑇𝑥𝑠𝑗(𝑋) = 𝑇𝑠𝑖(𝑥)𝜎𝑔𝑖𝑗(𝑥)(𝑇𝑥𝑠𝑖(𝑋)) + 𝑎𝑠𝑗(𝑥)((𝑔∗𝑖𝑗Θ)𝑥(𝑋)).

Note that the second term in this expression is a vertical vector, since it is in the image of the infinitesimal
Lie group action. Therefore,

ℱ𝑗,𝑥(𝑋, 𝑌) = Ω𝑠𝑗(𝑥)(𝑇𝑠𝑖(𝑥)𝜎𝑔𝑖𝑗(𝑥)(𝑇𝑥𝑠𝑖(𝑋))𝐻 , 𝑇𝑠𝑖(𝑥)𝜎𝑔𝑖𝑗(𝑥)(𝑇𝑥𝑠𝑖(𝑌))𝐻)
= Ω𝑠𝑖(𝑥)𝑔𝑖𝑗(𝑥)(𝑇𝑠𝑖(𝑥)𝜎𝑔𝑖𝑗(𝑥)(𝑇𝑥𝑠𝑖(𝑋)), 𝑇𝑠𝑖(𝑥)𝜎𝑔𝑖𝑗(𝑥)(𝑇𝑥𝑠𝑖(𝑌)))
= (𝜎∗𝑔𝑖𝑗(𝑥)Ω)𝑠𝑖(𝑥)(𝑇𝑥𝑠𝑖(𝑋), 𝑇𝑥𝑠𝑖(𝑌))
= Ad𝑔𝑖𝑗(𝑥)−1(Ω𝑠𝑖(𝑥)(𝑇𝑥𝑠𝑖(𝑋), 𝑇𝑥𝑠𝑖(𝑌)))
= Ad𝑔𝑖𝑗(𝑥)−1((𝑠∗𝑖Ω)𝑥(𝑋, 𝑌))
= Ad𝑔𝑖𝑗(𝑥)−1(ℱ𝑖,𝑥(𝑋, 𝑌)).

We have proved the following:
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Proposition 2.7 (Transformation of local field strenghts).
Let 𝜔 be a connection on 𝐺 ↪ 𝑃 𝜋→ 𝑀 with curvature Ω, and {𝑈𝑖}𝑖∈𝐽 a trivializing cover with
induced sections 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃 and transition maps 𝑔𝑖𝑗 ∶ 𝑈𝑖 ∩ 𝑈𝑗 → 𝐺. Let ℱ𝑖 = 𝑠∗𝑖Ω be the
local gauge field strenghts. Then for all 𝑥 ∈ 𝑈𝑖𝑗 = 𝑈𝑖 ∩ 𝑈𝑗,

ℱ𝑗,𝑥 = Ad𝑔𝑖𝑗(𝑥)−1 ∘ℱ𝑖,𝑥. (3)

We write this compactly as
ℱ𝑗 = Ad𝑔−1𝑖𝑗 ℱ𝑖.

2.3 The exterior covariant derivative
From corollary 2.6, we see that the curvatureΩ can be defined as the horizontal component of d𝜔. We
can extend this notion, and define the exterior covariant derivative d𝜔 ∶ Ω𝑘(𝑃, 𝔤) → Ω𝑘+1(𝑃, 𝔤)
as the horizontal component of the usual de Rham differential:

d𝜔𝛼(𝑋1, … , 𝑋𝑘+1) ∶= d𝛼(𝑋𝐻
1 , … , 𝑋𝐻

𝑘+1).

With this definition, we can simply write

Ω = d𝜔𝜔.

Clearly, by definition, d𝜔𝛼 is horizontal for any form 𝛼 ∈ Ω𝑘(𝑃, 𝔤). We also see that d𝜔𝛼 is pseu-
dotensorial of typeAd if𝛼 also is. The idea is that𝜎𝑔 preserves horizontality and thepullback commutes
with d, so in general pulling back by 𝜎𝑔 should behave reasonable well. Indeed, let 𝛼 ∈ Ω𝑘(𝑃, 𝔤) be
pseudotensorial of type Ad. Then

(𝜎∗𝑔d𝜔𝛼)𝑝(𝑋1, … , 𝑋𝑘+1) = (d𝜔𝛼)𝑝⋅𝑔(𝜎𝑔∗𝑋1, … , 𝜎𝑔∗𝑋𝑘+1)
= d𝛼𝑝⋅𝑔((𝜎𝑔∗𝑋1)𝐻 , … , (𝜎𝑔∗𝑋𝑘+1)𝐻)
= d𝛼𝑝⋅𝑔(𝜎𝑔∗(𝑋𝐻

1 ), … , 𝜎𝑔∗(𝑋𝐻
𝑘+1))

= (𝜎∗𝑔d𝛼)𝑝(𝑋𝐻
1 , … , 𝑋𝐻

𝑘+1)
= d(𝜎∗𝑔𝛼)𝑝 (𝑋

𝐻
1 , … , 𝑋𝐻

𝑘+1)

= Ad𝑔−1 d𝛼𝑝(𝑋𝐻
1 , … , 𝑋𝐻

𝑘+1)
= Ad𝑔−1 d𝜔𝛼𝑝(𝑋1, … , 𝑋𝑘+1).

He have then shown:

Lemma 2.8 (Exterior covariant derivative preserves basicness).
If 𝛼 ∈ Ωbas(𝑃, 𝔤), then d𝜔𝛼 ∈ Ω𝑘+1

bas (𝑃, 𝔤).

This result suggests that d𝜔 is particularly well-behaved on basic forms.

Proposition 2.9 (Expression for exterior covariant derivative on basic forms).
Let 𝛼 ∈ Ω𝑘

bas(𝑃, 𝔤) be a basic form. Then

d𝜔𝛼 = d𝛼 + [𝜔, 𝛼].

Proof.— Let’s consider the right-hand side. Let 𝑋0, … , 𝑋𝑘 be vectors on 𝑇𝑝𝑃. If all of them are hori-
zontal, then the term [𝜔, 𝛼] vanishes on them because, by definition,𝜔 vanishes on horizontal vectors,
and we end up with the definition of the exterior covariant derivative. Recalling the coordinate-free
expression for the exterior differential

d𝛼(𝑋0, … , 𝑋𝑘) =
𝑘
∑
𝑗=0

(−1)𝑗𝑋𝑗(𝛼(𝑋0, … , ̂𝑋𝑗 , … , 𝑋𝑘))

+∑
𝑖<𝑗
(−1)𝑖+𝑗𝛼([𝑋𝑖, 𝑋𝑗], 𝑋0, … , ̂𝑋𝑖, … , ̂𝑋𝑗 , … , 𝑋𝑘),
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we see that the whole thing vanishes whenever there is more than 1 vertical vector, since we will always
endup evaluating𝛼 in one of them. Similarly, we can see that in the evaluation of the bracket (following
lemma 2.2),

[𝜔, 𝛼](𝑋0, … , 𝑋𝑘) =
1
𝑘! ∑

𝜎∈𝔖𝑘+1

sgn(𝜎)[𝜔(𝑋𝜎(0)), 𝛼(𝑋𝜎(1), … , 𝑋𝜎(𝑘))],

if there ismore than one vertical vector, wewill always evaluate𝛼 in one of them, so everything vanishes.
Then, since d𝜔(𝛼) is horizontal, we trivially obtain the result.

The only non-trivial case is the one where we evaluate in exactly one vertical vector. Without loss
of generality, suppose 𝑋0 is vertical and 𝑋1, … , 𝑋𝑘 are horizontal. We still have that

d𝜔𝛼(𝑋0, … , 𝑋𝑘) = 0,

so we need to show that
d𝛼(𝑋0, … , 𝑋𝑘) = −[𝜔, 𝛼](𝑋0, … , 𝑋𝑘).

On the right-hand side, we see that the evaluation of [𝜔, 𝛼] reduces to the sum of the permutations
where we evaluate 𝜔 on the vertical vector 𝑋0, that is,

[𝜔, 𝛼](𝑋0, … , 𝑋𝑘) =
1
𝑘! ∑

𝜎∈𝔖𝑘+1
𝜎(0)=0

sgn(𝜎)[𝜔(𝑋𝜎(0)), 𝛼(𝑋𝜎(1), … , 𝑋𝜎(𝑘))]

= 1
𝑘! ∑

𝜎′∈𝔖𝑘

sgn(𝜎′)[𝜔(𝑋0), 𝛼(𝑋𝜎′(1), … , 𝑋𝜎′(𝑘))]

= 1
𝑘! ∑

𝜎′∈𝔖𝑘

sgn(𝜎′)2[𝜔(𝑋0), 𝛼(𝑋1, … , 𝑋𝑘)]

= [𝜔(𝑋0), 𝛼(𝑋1, … , 𝑋𝑘)].

Here we used the fact that a permutation that fixes 0 can be written as 𝜎(0) = 0; 𝜎(𝑖) = 𝜎′(𝑖) with
𝜎′ ∈ 𝔖𝑘, and these satisfy sgn(𝜎′) = sgn(𝜎). We have also used the fact that 𝛼 is antisymmetric.

Now we want to evaluate d𝛼, and for such we will use the long coordinate-free expression of the
exterior derivative. First, letting 𝜉 = 𝜔𝑝(𝑋0) ∈ 𝔤, we can extend 𝑋0 to a vertical vector field (which
we denote with the same symbol), as 𝑋0(𝑝) = 𝑎𝑝(𝜉); i.e. to the fundamental vector field associated to
𝜉. Second, we can also extend the vectors 𝑋1, … , 𝑋𝑘 to horizontal vector fields that are furthermore𝐺-
invariant. Todo so, we extend𝑇𝑝𝜋(𝑋𝑗) ∈ 𝑇𝜋(𝑝)𝑀 to a vector field on𝑀, and consider its horizontal lift
(see section 1.4), which we denote with the same symbol 𝑋𝑗 . With this construction, since horizontal
lifts are 𝐺-invariant and 𝐺-invariant fields commute with fundamental vector fields (lemma 1.12), we
have that

𝛼([𝑋𝑖, 𝑋𝑗], 𝑋0, … , ̂𝑋𝑖, … , ̂𝑋𝑗 , … , 𝑋𝑘) = 0.
This follows for 𝑖 = 0, since we evaluate on the bracket of a fundamental vector field and a𝐺-invariant
field, which is vanishing. When 𝑖 > 0, we are evaluating 𝛼 directly on a vertical field, so everything
vanishes as well. Then we need only consider

d𝛼(𝑋0, … , 𝑋𝑘) =
𝑘
∑
𝑗=0

(−1)𝑗𝑋𝑗(𝛼(𝑋0, … , ̂𝑋𝑗 , … , 𝑋𝑘)) = 𝑋0(𝛼(𝑋1, … , 𝑋𝑘)).

The only term in the sum that does not immediately vanish is the one where we don’t evaluate 𝛼 on
𝑋0. Now we evaluate at a point 𝑝. An integral curve of 𝑋0 at 𝑝 is 𝑡 ↦ 𝑝 ⋅ exp(𝑡𝜉), and we write
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𝑔𝑡 = exp(𝑡𝜉), so
d𝛼𝑝(𝑋0, … , 𝑋𝑘) = 𝑋0(𝑝)(𝛼(𝑋1, … , 𝑋𝑘))

= d
d𝑡
|||𝑡=0

𝛼𝑝⋅𝑔𝑡(𝑋1(𝑝 ⋅ 𝑔𝑡), … , 𝑋𝑘(𝑝 ⋅ 𝑔𝑡))

= d
d𝑡
|||𝑡=0

𝛼𝑝⋅𝑔𝑡(𝑇𝑝𝜎𝑔𝑡(𝑋1(𝑝)), … , 𝑇𝑝𝜎𝑔𝑡(𝑋𝑘(𝑝)))

= d
d𝑡
|||𝑡=0

(𝜎∗𝑔𝑡𝛼)𝑝(𝑋1(𝑝), … , 𝑋𝑘(𝑝))

= d
d𝑡
|||𝑡=0

Ad𝑔−1𝑡 𝛼𝑝(𝑋1(𝑝), … , 𝑋𝑘(𝑝))

= ad(−𝜉)(𝛼𝑝(𝑋1(𝑝), … , 𝑋𝑘(𝑝)))
= −[𝜉, 𝛼𝑝(𝑋1(𝑝), … , 𝑋𝑘(𝑝))]
= −[𝜔(𝑋0), 𝛼𝑝(𝑋1(𝑝), … , 𝑋𝑘(𝑝))]. ■

A corollary of this expression is that d𝜔 is not nilpotent. This means that we cannot (immediately)
construct a cohomology theory based on basic forms and the exterior covariant derivative!

Corollary 2.10 (Exterior covariant derivative is not nilpotent).
Let 𝜑 ∈ Ω0

bas(𝑃, 𝔤). Then
(d𝜔 ∘ d𝜔)𝜑 = [Ω, 𝜑].

Proof.— We have

d𝜔(d𝜔𝜑) = d(d𝜔𝜑) + [𝜔, d𝜔𝜑]
= d(d𝜑 + [𝜔, 𝜑]) + [𝜔, d𝜑] + [𝜔, [𝜔, 𝜑]]
= d[𝜔, 𝜑] + [𝜔, d𝜑] + [𝜔[𝜔, 𝜑]]
= [d𝜔 , 𝜑] − [𝜔, d𝜑] + [𝜔, d𝜑] + [𝜔[𝜔, 𝜑]]
= [d𝜔 , 𝜑] + [𝜔, [𝜔, 𝜑]].

Here we used the fact that for 𝛼 ∈ Ω𝑘(𝑃, 𝔤) and 𝛽 ∈ Ω𝑙(𝑃, 𝔤):
d[𝛼, 𝛽] = [d𝛼 , 𝛽] + (−1)𝑘[𝛼, d𝛽].

This can be readily checked from the definition, and it follows since the bracket is defined in terms of
the wedge product.

Now let’s evaluate at two vectors 𝑢, 𝑣 ∈ 𝑇𝑃:
[𝜔, [𝜔, 𝜑]](𝑢, 𝑣) = [𝜔(𝑢), [𝜔, 𝜑](𝑣)] − [𝜔(𝑣), [𝜔, 𝜑](𝑢)]

= [𝜔(𝑢), [𝜔(𝑣), 𝜑]] − [𝜔(𝑣), [𝜔(𝑢), 𝜑]]
= −[𝜔(𝑢), [𝜑, 𝜔(𝑣)]] − [𝜔(𝑣), [𝜔(𝑢), 𝜑]]
= [𝜑, [𝜔(𝑣), 𝜔(𝑢)]]
= [[𝜔(𝑢), 𝜔(𝑣)], 𝜑]

= [12[𝜔, 𝜔], 𝜑] (𝑢, 𝑣).

Therefore, we obtain
d𝜔(d𝜔𝜑) = [d𝜔, 𝜑] + 1

2[[𝜔, 𝜔], 𝜑] = [Ω, 𝜑]. ■

3 The relation with connections on vector bundles
3.1 From vector bundles to principal bundles
Let’s go back to known waters. Let 𝜋𝐸 ∶ 𝐸 → 𝑀 be a vector bundle of rank 𝑘 over𝑀. Recall that a
connection∇ on 𝐸 is (at least in one of its several flavors) a bilinear map

∇ ∶ 𝔛(𝑀) × Γ(𝐸) → Γ(𝐸),
where we denote∇(𝑋)(𝑠) = ∇𝑋(𝑠), such that for all 𝑋 ∈ 𝔛(𝑀), 𝑠 ∈ Γ(𝐸) and 𝑓 ∈ 𝐶∞(𝑀):
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1. ∇𝑓𝑋𝑠 = 𝑓∇𝑋𝑠, and

2. ∇𝑋(𝑓𝑠) = 𝑓∇𝑋𝑠 + ℒ𝑋(𝑓)𝑠 (Leibniz rule).

At this point, we know that we have a special principal GL(𝑘, ℝ)-bundle that is directly related to 𝐸,
namely the frame bundle Fr(𝐸). Is there any relation between the connection∇ and possible connec-
tions on Fr(𝐸)? Can we find a connection 1-form 𝜔∇ ∈ Ω1(Fr(𝐸), 𝔤𝔩(𝑘, ℝ)) that is induced by∇?

Indeed, we can. First, we can rethink this map by fixing 𝑠 ∈ Γ(𝐸). With 𝑠 held fixed, we can then
write

∇𝑠 ∶ 𝔛(𝑀) → Γ(𝐸)
𝑋 ↦ ∇𝑋𝑠.

By property (1) above, the map ∇𝑠 is 𝐶∞(𝑀)-linear, and so we can interpret it as an 𝐸-valued 1-form
on𝑀:

∇𝑠 ∈ Ω1(𝑀, 𝐸).
If 𝑓 ∈ 𝐶∞(𝑀) is a function, then from the Leibniz rule we obtain that for all 𝑋 ∈ 𝔛(𝑀),

∇(𝑓𝑠)(𝑋) = ∇𝑋(𝑓𝑠) = (ℒ𝑋𝑓)𝑠 + 𝑓∇𝑋𝑠 = d𝑓 (𝑋)𝑠 + 𝑓∇𝑠(𝑋),

so we may write
∇(𝑓𝑠) = d𝑓 ⊗ 𝑠 + 𝑓∇𝑠

Now let𝑈 be a trivializing open set of the bundle, and let {𝑒1, … 𝑒𝑘} be a frame on𝐸𝑈 ∶= 𝜋−1(𝑈). Of
course, each element 𝑒𝑗 is a section of 𝐸, so we can consider ∇𝑒𝑗 ∈ Ω1(𝑈, 𝐸𝑈) (why 𝐸𝑈 and not just
𝐸?). In particular, we can write∇𝑒𝑗 as

∇𝑒𝑗 = ∑
𝑖
Γ𝑖𝑗 𝑒𝑖,

where each Γ𝑖𝑗 ∈ Ω1(𝑈) is a 1-form. We can collect all the Γ𝑖𝑗 in a 𝔤𝔩(𝑘, ℝ)-valued form, whose entries
are called the connection coefficients (or in some cases, the Christoffel symbols)

Γ = (
Γ11 … Γ1𝑘
⋮ ⋱ ⋮
Γ𝑘1 … Γ𝑘𝑘

) ∈ Ω1(𝑈, 𝔤𝔩(𝑘, ℝ)).

What do we have at this point? For each frame {𝑒1, … , 𝑒𝑘} of 𝐸, which is defined locally on 𝑈 ⊆ 𝑀,
we have a 𝔤𝔩(𝑘, ℝ)-valued 1-form Γ. This smells quite a lot like what we’re looking for! If we can show
that the connection coeffients transform nicely with respect to change of frames, we can invoke the
physicists-did-nothing-wrong proposition (proposition 1.10) and construct a connection on Fr(𝐸).

So let 𝑒′1, … , 𝑒′𝑘 be another frame, defined on an open 𝑈′ ⊆ 𝑀. On 𝑈 ∩ 𝑈′, each element 𝑒′𝑗 can
be expressed in terms of the first frame. For each 𝑥 ∈ 𝑈 ∩𝑈′ there is a matrix𝐴(𝑥) ∈ GL(𝑘, ℝ) such
that

𝑒′𝑗 (𝑥) = ∑
𝑖
𝐴(𝑥)𝑖𝑗𝑒𝑖(𝑥),

or rather, we have a GL(𝑘, ℝ)-valued function𝐴 on𝑈 ∩𝑈′, which is precisely the transition function
of the trivialization of Fr(𝐸). Now, when we evaluate the connection on 𝑒′𝑗 , we get

∇𝑒′𝑗 = ∑
𝑖
∇(𝐴𝑖 𝑗𝑒𝑖)

= ∑
𝑖
(d𝐴𝑖 𝑗 ⊗ 𝑒𝑖 + 𝐴𝑖 𝑗∇𝑒𝑖)

= ∑
𝑖
(d𝐴𝑖 𝑗 ⊗ 𝑒𝑖 + 𝐴𝑖 𝑗∑

𝑟
Γ𝑟𝑖 𝑒𝑟)

= ∑
𝑖
(d𝐴𝑖 𝑗 +∑

𝑟
𝐴𝑟𝑗Γ𝑖𝑟) ⊗ 𝑒𝑖.
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On the other hand,

∇𝑒′𝑗 = ∑
𝑟
Γ′𝑟𝑗 𝑒′𝑟 = ∑

𝑖,𝑟
Γ′𝑟𝑗 𝐴𝑖𝑟𝑒𝑖.

Comparing with the previous result, we obtain

∑
𝑟
Γ′𝑟𝑗 𝐴𝑖𝑟 = d𝐴𝑖 𝑗 +∑

𝑟
𝐴𝑟𝑗Γ𝑖𝑟 .

Noting that the upper index is the column index, we see that the previous equation is for the compo-
nents of the matrix equation

𝐴Γ′ = d𝐴 + Γ𝐴,
that is

Γ′ = 𝐴−1Γ𝐴 + 𝐴−1 d𝐴 .
Indeed, we can now invoke proposition 1.10 and claim:

Theorem 3.1 (Connection induced by connection on vector bundle).
Let ∇ be a connection on a vector bundle 𝐸 → 𝑀 of rank 𝑘. Then there is a unique connection
1-form 𝜔∇ on the frame bundle Fr(𝐸) such that, given a local frame 𝑒 ∶ 𝑈 → Fr(𝐸), the local
gauge potential is given by the connection coefficients:

𝑒∗𝜔∇ = Γ.

There’s also a direct way to construct 𝜔∇ given a connection ∇, that does not require using the
physicists-did-nothing-wrong proposition. It can be found in [Bär11, example 2.3.3] and [Cra15, section
2.3.5].

3.2 Interlude: Associated bundles
The converse of theorem 3.1 can be done with a little bit more generality, without any additional com-
plications. We will see that given any connection 𝜔 ∈ Ω1(𝑃, 𝔤), we can find a connection on a wide
array of vector bundles that are related to 𝑃.

Let𝐺 ↪ 𝑃 𝜋→ 𝑀 be a principal𝐺-bundle,𝑉 a vector space and 𝜌 ∶ 𝐺 → GL(𝑉) a representation.
We define the associated bundle 𝑃 ×𝜌 𝑉 as the quotient of 𝑃 × 𝑉 under the action

(𝑝, 𝑣) ⋅ 𝑔 = (𝑝 ⋅ 𝑔, 𝜌(𝑔−1)𝑣).
We will denote 𝜌(𝑔)𝑣 simply as 𝑔 ⋅ 𝑣 whenever there is no chance for confusion, and the elements of 𝐸
in terms of representatives, e.g. [𝑝, 𝑣]. We have a projection map 𝜋𝐸 ∶ 𝐸 → 𝑀 a 𝜋𝐸([𝑝, 𝑣]) = 𝜋(𝑝).
This map is well-defined since 𝜋(𝑝 ⋅ 𝑔) = 𝜋(𝑝) for all 𝑝 ∈ 𝑃 and 𝑔 ∈ 𝐺.

Of course, we have just given the definition as a set. We should check that 𝑃 ×𝜌 𝑉 is 1. a manifold
2. a vector bundle. Usually we would skip this part but actually the construction of the charts and
trivialization on 𝐸 will give us a better understanding of it, and will tell us how it looks locally.

First, let’s look at trivializations. Once we have the trivializations, we can construct a coordinate
atlas adapted from the atlas of𝑀, as with all fiber bundles.

For each 𝑝 ∈ 𝑃, we define a map 𝑖𝑝 ∶ 𝑉 → 𝐸 as

𝑖𝑝(𝑣) = [𝑝, 𝑣].
This map is a bijection from 𝑉 to the fiber 𝐸𝜋(𝑝) above 𝜋(𝑝). Clearly, by construction 𝑖𝑝 is surjective.
And to see injectivity, suppose that 𝑖𝑝(𝑣) = 𝑖𝑝(𝑣′). Then [𝑝, 𝑣] = [𝑝, 𝑣′], so there exists a 𝑔 ∈ 𝐺 such
that (𝑝, 𝑣) = (𝑝 ⋅ 𝑔, 𝑔−1 ⋅ 𝑣′). But the action of 𝐺 is free on 𝑃, so necessarily 𝑔 = 𝑒, and so 𝑣 = 𝑣′.
This allows us to endow 𝐸𝜋(𝑝) with a vector space structure such that 𝑖𝑝 is a linear isomorphism; i.e. as
[𝑝, 𝑣] + 𝛼[𝑝, 𝑣′] = [𝑝, 𝑣 + 𝛼𝑣′] with the same 𝑝. Of course, this should be the same regardless of
the choice of 𝑝 (in the fiber of 𝜋, that is). Indeed, if 𝑝′ ∈ 𝑃 is such that 𝜋(𝑝′) = 𝜋(𝑝), then there is a
𝑔 ∈ 𝐺 such that 𝑝′ = 𝑝 ⋅ 𝑔.

Therefore, we have that

𝑖𝑝′(𝑣) = [𝑝′, 𝑣] = [𝑝 ⋅ 𝑔, 𝑣] = [𝑝, 𝑔 ⋅ 𝑣] = 𝑖𝑝(𝑔 ⋅ 𝑣) = (𝑖𝑝 ∘ 𝜌(𝑔))(𝑣).
Then 𝑖𝑝′ and 𝑖𝑝 are related by an automorphism of 𝑉 , so the induced vector space structure on 𝐸𝜋(𝑝)
is the same. This last result will be useful again later, so let’s put it as a lemma.

19



Lemma 3.2.
Let 𝐺 ↪ 𝑃 𝜋→ 𝑀 be a principal 𝐺-bundle, 𝑉 a vector space and 𝜌 ∶ 𝐺 → GL(𝑉) a representa-
tion. Write 𝐸 = 𝑃×𝜌 𝑉 for the bundle associated to 𝑃 via 𝜌. For 𝑝 ∈ 𝑃, define 𝑖𝑝 ∶ 𝑉 → 𝐸𝜋(𝑝)
as 𝑖𝑝(𝑣) = [𝑝, 𝑣]. Then 𝑖𝑝 is a bijection, and for all 𝑔 ∈ 𝐺,

𝑖𝑝⋅𝑔 = 𝑖𝑝 ∘ 𝜌(𝑔).

Let {𝑈𝑖}𝑖∈𝐼 be a cover of 𝑀 that trivializes 𝑃. For each 𝑈𝑖 we have a canonical section (or local
gauge) 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃𝑈𝑖 (see section 2.2). With this canonical section we can construct a trivialization
Ψ𝑖 ∶ 𝑈𝑖 × 𝑉 → 𝐸𝑈𝑖 as

Ψ𝑖(𝑥, 𝑣) = 𝑖𝑠𝑖(𝑥)(𝑣) = [𝑠𝑖(𝑥), 𝑣].
It can be shown [see e.g. Nab10, pp. 381] that when we endow 𝐸 with the quotient topology, 𝐸 is
Hausdoff and each mapΨ𝑖 is a homeomorphism. This is a straightforward (albeit a bit tedious) check.

How do the transition functions look? Consider two trivializing open sets𝑈𝑖, 𝑈𝑗 with their canon-
ical sections 𝑠𝑖, 𝑠𝑗 , and let 𝑈𝑖𝑗 = 𝑈𝑖 ∩ 𝑈𝑗 . We have that there is a transition function 𝑔𝑖𝑗 ∶ 𝑈𝑖𝑗 → 𝐺
such that for all 𝑥 ∈ 𝑈𝑖𝑗 ,

𝑠𝑗(𝑥) = 𝑠𝑖(𝑥) ⋅ 𝑔𝑖𝑗(𝑥).
Then, for (𝑥, 𝑣) ∈ 𝑈𝑖𝑗 × 𝑉 , we have

Ψ𝑗(𝑥, 𝑣) = [𝑠𝑗(𝑥), 𝑣] = [𝑠𝑖(𝑥) ⋅ 𝑔𝑖𝑗(𝑥), 𝑣] = [𝑠𝑖(𝑥), 𝑔𝑖𝑗(𝑥) ⋅ 𝑣] = Ψ𝑖(𝑥, 𝑔𝑖𝑗(𝑣)).

This implies that
(Ψ−1

𝑖 ∘ Ψ𝑗)(𝑥, 𝑣) = (𝑥, 𝑔𝑖𝑗(𝑥) ⋅ 𝑣) = (𝑥, 𝜌(𝑔𝑖𝑗(𝑥))(𝑣)). (4)

Then the transition functions are of the form 𝜌(𝑔𝑖𝑗) ∈ GL(𝑉), with 𝑔𝑖𝑗 the gauge transitions of the
principal bundle. This tells us that there is a unique smooth structure on 𝐸 such that theΨ𝑖 are diffeo-
morphisms, and such that 𝜋𝐸 ∶ 𝐸 → 𝑀 is a smooth surjection. Thus, 𝐸 is a vector bundle over𝑀
with typical fiber 𝑉 . Let’s put it as a proposition.

Proposition 3.3 (Associated bundle is a smooth vector bundle).
Let 𝐺 ↪ 𝑃 𝜋→ 𝑀 be a principal 𝐺-bundle, 𝑉 a vector space and 𝜌 ∶ 𝐺 → GL(𝑉) a rep-
resentation. Write 𝐸 = 𝑃 ×𝜌 𝑉 for the bundle associated to 𝑃 via 𝜌. Then 𝐸 is a smooth
vector bundle over 𝑀 with typical fiber 𝑉 . Furthermore, given a cover {𝑈𝑖}𝑖∈𝐼 that trivializes
𝑃, with canonical sections 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃 and transition functions 𝑔𝑖𝑗 ∶ 𝑈𝑖 ∩ 𝑈𝑗 → 𝐺, the maps
Ψ𝑖 ∶ 𝑈𝑖×𝑉 → 𝐸 given asΨ𝑖(𝑥, 𝑣) = [𝑠𝑖(𝑥), 𝑣] are trivializations of 𝐸, with transition functions
𝜌(𝑔𝑖𝑗) ∶ 𝑈𝑖 ∩ 𝑈𝑗 → GL(𝑉).

In physics, we usually keep to local gauges. In a local gauge (𝑈𝑖, 𝑠𝑖) , the bundle 𝑃 ×𝜌 𝑉 is trivial
and “looks like” 𝑈𝑖 × 𝑉 . Equation (4) says that under a change of gauge 𝑠𝑖 ↦ 𝑠𝑗 , an element 𝑣 ∈ 𝑉
transforms as 𝑣 → 𝜌(𝑔𝑖𝑗)𝑣.

Example 3.4 (Frame bundles).
Let 𝐸 𝜋𝐸→ 𝑀 be a real vector bundle of rank 𝑘 over a smooth manifold𝑀. We have a principal
GL(𝑘, ℝ)-bundle over𝑀, which is the frame bundle Fr(𝐸), and the identity representation of
GL(𝑘, ℝ) onℝ𝑘, id ∶ GL(𝑘, ℝ) → GL(ℝ𝑘). It is a straightforward check to see that

𝐸 ≅ Fr(𝐸) ×id ℝ𝑘.

Example 3.5 (Adjoint bundle).
Let𝐺 ↪ 𝑃 𝜋→ 𝑀 be a principal𝐺 bundle. We have a natural representation Ad ∶ 𝐺 → GL(𝔤).
The vector bundle associated to 𝑃 via Ad is called the adjoint bundle of 𝑃, and is denoted
Ad(𝑃) ∶= 𝑃 ×Ad 𝔤.

In particular, if 𝐸 𝜋𝐸→ 𝑀 is a vector bundle of rank 𝑘, and Fr(𝐸) is its frame bundle, then we
have that

Ad(Fr(𝐸)) ≅ End(𝐸).
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Howdo sections of𝐸 look like locally? Ifwe fix a cover {𝑈𝑖}𝑖∈𝐼 of𝑀 that trivializes𝑃, with canonical
sections 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃, we have that this cover also trivializes 𝐸. Suppose that 𝜓 ∶ 𝑀 → 𝐸 is a section
of 𝐸. When restricted to𝑈𝑖, we have that 𝜓 looks locally like

(Ψ−1
𝑖 ∘ 𝜓)(𝑥) = (𝑥, 𝜓𝑖(𝑥)),

for some smooth𝜓𝑖 ∶ 𝑈𝑖 → 𝑉 . In fact, given a local gauge 𝑠𝑖, there is a bijection between smoothmaps
𝜓𝑖 ∶ 𝑈𝑖 → 𝑉 and local sections 𝜓 ∶ 𝑈𝑖 → 𝐸. On the overlaps𝑈𝑖 ∩ 𝑈𝑗 , the same argument of before
shows that the “trivializations” of the sections transform as

𝜓𝑗(𝑥) = 𝑔𝑗𝑖(𝑥) ⋅ 𝜓𝑖(𝑥) = 𝜓𝑗(𝑥) = 𝑔𝑖𝑗(𝑥)−1 ⋅ 𝜓𝑖(𝑥).

Now we see that there is a deeper relation between sections of 𝐸 (in fact, of 𝐸-valued forms) and
𝑉 -valued forms on 𝑃. Again, let 𝜓 ∶ 𝑀 → 𝐸 be a section. In a local trivialization 𝑈𝑖 with canonical
section 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃, we can write any element 𝑝 ∈ 𝑃𝑈𝑖 = 𝜋−1(𝑈𝑖) uniquely as

𝑝 = 𝑠𝑖(𝑥) ⋅ 𝑔𝑖
where 𝑥 = 𝜋(𝑝). By the discussion above, there is a function 𝜓𝑖 ∶ 𝑈𝑖 → 𝑉 such that for all 𝑥 ∈ 𝑈𝑖, 𝜓
looks like

𝜓(𝑥) = [𝑠𝑖(𝑥), 𝜓𝑖(𝑥)].
So in general, we can change the representative of 𝜓(𝑥) to be of the form [𝑝, 𝑣] for any 𝑝 in the fiber
above 𝑥;

𝜓(𝑥) = [𝑠𝑖(𝑥), 𝜓𝑖(𝑥)] = [𝑠𝑖(𝑥) ⋅ 𝑔𝑖, 𝑔−1𝑖 ⋅ 𝜓𝑖(𝑥)].
We can thus define a function ̃𝜓𝑖 ∶ 𝑃𝑈𝑖 → 𝑉 as

̃𝜓𝑖(𝑠𝑖(𝑥) ⋅ 𝑔𝑖) ∶= 𝑔−1𝑖 ⋅ 𝜓𝑖(𝑥).

It is a straightforward check to see that this function iswell-defined on𝑃𝑈𝑖 ; and in fact that the collection
of { ̃𝜓𝑖}𝑖∈𝐼 glues together to a map ̃𝜓 ∶ 𝑃 → 𝑉 which satisfies that for all 𝑝 ∈ 𝑃 and 𝑔 ∈ 𝐺,

̃𝜓(𝑝 ⋅ 𝑔) = 𝑔−1 ⋅ ̃𝜓(𝑝).

We say that ̃𝜓 is𝐺-equivariant or pseudotensorial of type 𝜌.
This is a general fact: 𝑘-forms on𝑀 which are valued in 𝐸 correspond to a certain kind to 𝑘-forms

on 𝑃 which are valued in 𝑃.
Definition 3.6 (Tensorial form).
Let 𝐺 ↪ 𝑃 𝜋→ 𝑀 be a principal 𝐺-bundle. We say that a form 𝛼 ∈ Ω𝑘(𝑃, 𝑉) is tensorial of
type 𝜌 or basic if

1. 𝛼 is horizontal, i.e. 𝜄𝑋𝛼 = 0 for any vertical vector 𝑋 ∈ 𝑇𝑃; and

2. 𝛼 is pseudotensorial of type 𝜌, that is,

𝜎∗𝑔𝛼 = 𝜌(𝑔−1) ∘ 𝛼.

We denote the space of tensorial 𝑘-forms of type 𝜌 by Ω𝑘
𝜌(𝑃, 𝑉).

Theorem 3.7 (Lowering of tensorial forms).
Let 𝐺 ↪ 𝑃 𝜋→ 𝑀 be a principal bundle, 𝑉 a vector space, 𝜌 ∶ 𝐺 → GL(𝑉) a representation
of 𝐺 on 𝑉 and 𝐸 = 𝑃 ×𝜌 𝑉 the associated vector bundle. Then there is a linear isomorphism
ℎ ∶ Ω𝑘

𝜌(𝑃, 𝑉) → Ω𝑘(𝑀, 𝐸).

Proof (Sketch).— Define ℎ ∶ Ω𝑘
𝜌(𝑃, 𝑉) → Ω𝑘(𝑀, 𝐸) as follows: given 𝜙 ∈ Ω𝑘

𝜌(𝑃, 𝑉), define

ℎ(𝜙)𝑥(𝑉1, … , 𝑉𝑘) ∶= [𝑝, 𝜙𝑝(𝑉1, … , 𝑉𝑘)] ,

where 𝑝 ∈ 𝜋−1(𝑥), 𝑉1, … , 𝑉𝑘 ∈ 𝑇𝑥𝑀, and the 𝑉 𝑖 are lifts of the 𝑉𝑖; that is, 𝑇𝑝𝜋(𝑉 𝑖) = 𝑉𝑖 for 𝑖 =
1, 2, … , 𝑘.
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It is straightforward, but a bit long, to check that ℎ is well-defined.
The inverse of ℎ can be given explicitly: given 𝜓 ∈ Ω𝑘(𝑀, 𝐸), we define ℎ−1𝜙 ∈ Ω𝑘

𝜌(𝑃, 𝑉) as

(ℎ−1𝜙)𝑝(𝑉1, … , 𝑉𝑘) ∶= 𝑖−1𝑝 (𝜋∗𝜙)𝑥(𝑉1, … , 𝑉𝑘).

Again, it is a straightforward check to see that these maps are well-defined, linear, and inverses of one
another. These maps are natural in the sense that they are the obvious choice given the data that we
have. ■

The associated bundle is a vector bundle with fiber 𝑉 , so we now can ask ourselves if, given a con-
nection 𝜔 on 𝑃, there is an induced connection∇𝜔 on 𝐸.

3.3 From principal bundles to vector bundles
As above, for any connection ∇ on 𝐸, given a section 𝑠 ∈ Γ(𝐸), we have an 𝐸-valued 1-form ∇𝑠 ∈
Ω1(𝑀, 𝐸), so we can think of a connection as a map ∇ ∶ Γ(𝐸) → Ω1(𝑀, 𝐸). Noting that a section
of 𝐸 is just an 𝐸-valued 0-form, and using the isomorphism ℎ of theorem 3.7,we see that the problem
is reduced to finding a suggestively-named map

d𝜔 ∶ Ω0
bas(𝑃, 𝑉) → Ω1

bas(𝑃, 𝑉),

that is nicely related to 𝜔 and that satisfies the Leibniz rule when we go back to𝑀. Once we have such
a map, we can define∇𝜔 on 𝐸 such that the following diagram commutes:

Ω0
𝜌(𝑃, 𝑉) Ω1

𝜌(𝑃, 𝑉)

Γ(𝐸) Ω1(𝑀, 𝐸)
ℎ

d𝜔

ℎ
∇𝜔

But wait a minute... for the case where 𝜌 = Ad and 𝑉 = 𝔤, we already have a such a map, namely the
exterior covariant derivative d𝜔, which acts on basic forms according to proposition 2.9 as

d𝜔𝛼 = d𝛼 + [𝜔, 𝛼].

And now we use the ancient art of reverse-engineering. If 𝛼 is a 0-form, we can rewrite [𝜔, 𝛼] in terms
of the adjoint representation, precisely as [𝜔, 𝛼] = ad(𝜔)(𝛼), where ad = 𝑇𝑒 Ad, so that

d𝜔𝛼 = d𝛼 + (𝑇𝑒 Ad ∘𝜔)(𝛼).

This suggests that for a general vector space 𝑉 and representation 𝜌 ∶ 𝐺 → GL(𝑉), we define

d𝜔𝛼 ∶= d𝛼 + (𝑇𝑒𝜌 ∘ 𝜔)(𝛼),

on all basic 0-forms. The derivative 𝑇𝑒𝜌 ∶ 𝔤 → End(𝑉) is called the infinitesimal action of 𝔤 on 𝑉 ,
induced by the action 𝜌.

Explicitly, for 𝑝 ∈ 𝑃 and 𝑋 ∈ 𝑇𝑝𝑃, it is defined as

d𝜔𝛼𝑝(𝑋) = (d𝛼)𝑝(𝑋) + ((𝑇𝑒𝜌)(𝜔𝑝(𝑋)))(𝛼(𝑝)).

What we now need to show is that the map

∇𝜔 ∶= ℎ ∘ d𝜔 ∘ ℎ−1 ∶ Γ(𝐸) → Ω1(𝑀, 𝐸),

satisfies the Leibniz rule,
∇𝜔(𝑓𝑠) = d𝑓 ⊗ 𝑠 + 𝑓∇𝜔𝑠.

for all 𝑓 ∈ 𝐶∞(𝑀) and 𝑠 ∈ Γ(𝐸).
To prove this, we need to get our hands dirty. Let 𝑓 ∈ 𝐶∞(𝑀) and 𝑠 ∈ Γ(𝐸). The basic 0-form

induced on 𝑃 by 𝑓𝑠 is

ℎ−1(𝑓𝑠)(𝑝) = 𝑖−1𝑝 ((𝑓(𝜋(𝑝))𝑠(𝜋(𝑝))) = (𝑓 ∘ 𝜋)(𝑝)𝑖−1𝑝 (𝑠(𝜋(𝑝))),
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and soℎ−1(𝑓𝑠) = (𝑓∘𝜋)ℎ−1(𝑠). Write ̃𝑓 = 𝑓∘𝜋, and ̃𝑠 = ℎ−1(𝑠). Then ̃𝑓 is a𝐺-invariant real-valued
function and ̃𝑠 is a basic 𝑉 -valued function. Now we apply d𝜔:

d𝜔( ̃𝑓 ̃𝑠) = d( ̃𝑓 ̃𝑠) + (𝑇𝑒𝜌 ∘ 𝜔)( ̃𝑓 ̃𝑠) = d ̃𝑓 ̃𝑠 + ̃𝑓 d ̃𝑠 + ̃𝑓(𝑇𝑒𝜌 ∘ 𝜔)( ̃𝑠) = d ̃𝑓 ̃𝑠 + ̃𝑓 d𝜔 ̃𝑠 .

Herewehave that ̃𝑓 comes out of the differential of the representation, because once evaluated at𝜔𝑝(𝑋)
for some 𝑝 ∈ 𝑃, 𝑋 ∈ 𝑇𝑝𝑃, (𝑇𝑒𝜌)(𝜔𝑝(𝑋)) is linear. Now we apply ℎ, evaluate at a point 𝑥 ∈ 𝑀 and a
vector 𝑋 ∈ 𝑇𝑥𝑀:

∇𝜔(𝑓𝑠)𝑥(𝑋) = ℎ(d𝜔(ℎ−1(𝑓𝑠)))𝑥(𝑋)
= ℎ(d ̃𝑓 ̃𝑠 + ̃𝑓 d𝜔 ̃𝑠)𝑥(𝑋)
= [𝑝, 𝑇𝑝 ̃𝑓( ̃𝑋) ̃𝑠(𝑝) + ̃𝑓(𝑝) d𝜔 ̃𝑠𝑝 ( ̃𝑋)].

Now we recall that ̃𝑓 = 𝑓 ∘ 𝜋, so ̃𝑓(𝑝) = 𝑓(𝑥) and

𝑇𝑝 ̃𝑓( ̃𝑋) = 𝑇𝑥𝑓𝑇𝑝𝜋( ̃𝑋) = 𝑇𝑥𝑓(𝑋).

Therefore

∇𝜔(𝑓𝑠)𝑥(𝑋) = [𝑝, 𝑇𝑥𝑓(𝑋) ̃𝑠(𝑝)] + [𝑝, 𝑓(𝑥) d𝜔 ̃𝑠𝑝 ( ̃𝑋)]
= 𝑇𝑥𝑓(𝑋)[𝑝, ̃𝑠(𝑝)] + 𝑓(𝑥)[𝑝, d𝜔 ̃𝑠𝑝 ( ̃𝑋)]
= (d𝑓 ⊗ 𝑠 + 𝑓∇𝜔𝑠)𝑝(𝑋).

Then∇𝜔 is, indeed, a connection on 𝐸. We have then proved

Theorem 3.8 (Connection induced by a connection on principal bundle).
Let 𝐺 ↪ 𝑃 𝜋→ 𝑀 be a principal 𝐺-bundle, 𝑉 a vector space, 𝜌 ∶ 𝐺 → GL(𝑉) a representation
and 𝐸 = 𝑃 ×𝜌 𝑉 the associated bundle. Given a connection 𝜔 ∈ Γ1(𝑃, 𝔤), there is an induced
connection ∇𝜔 ∶ Γ(𝐸) → Ω1(𝑀, 𝐸) such that the following diagram commutes:

Ω0
𝜌(𝑃, 𝑉) Ω1

𝜌(𝑃, 𝑉)

Γ(𝐸) Ω1(𝑀, 𝐸)
ℎ

d𝜔

ℎ
∇𝜔

.

Another way to prove this theorem is to go local, and define the connection in terms of the connection
coefficients. This suffices to uniquely define a connection on a vector bundle [see Nic18, Proposition
3.3.5], if the coefficients transform well enough.

So let’s go local, and try to see what the beast of ∇𝜔 = ℎ ∘ d𝜔 ∘ ℎ−1 is. As always, let {𝑈𝑖}𝑖∈𝐼 be
a cover of 𝑀 that trivializes 𝑃, with canonical sections 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃𝑈𝑖 , and gauge transitions 𝑔𝑖𝑗 ∶
𝑈𝑖 ∩ 𝑈𝑗 → 𝐺. As we saw in section 3.2, this trivialization also induces a trivialization of the associated
bundle 𝐸 = 𝑃 ×𝜌 𝑉 .

We can go further and see that the trivialization of 𝑃 also makes a further identification in the iso-
morphismΩ𝑘

𝜌(𝑃, 𝑉) ≅ Ω𝑘(𝑀, 𝐸). Given a form 𝛼 ∈ Ω𝑘
𝜌(𝑃, 𝑉), we have that

ℎ(𝛼)𝑥(𝑉1, … , 𝑉𝑘) = [𝑝, 𝛼𝑝(𝑉1, … , 𝑉𝑘)]

for 𝑝 ∈ 𝜋−1(𝑥) and 𝑉1, … , 𝑉𝑘 lifts of the 𝑉1, … , 𝑉𝑘. But we have a preferred choice of element in the
fiber of 𝑥, namely 𝑝 = 𝑠𝑖(𝑥). Similarly, we have a preferred lift of the 𝑉𝑗 , namely as 𝑉𝑗 = 𝑇𝑥𝑠𝑖(𝑉𝑗). We
then have that

ℎ(𝛼)𝑥(𝑉1, … , 𝑉𝑘) = [𝑠𝑖(𝑥), (𝑠∗𝑖 𝛼)𝑥(𝑉1, … , 𝑉𝑘)].
Thus, we have that the following diagram commutes:

Ω𝑘
𝜌(𝑃𝑈𝑖 , 𝑉) Ω𝑘(𝑈𝑖, 𝐸)

Ω𝑘(𝑈𝑖, 𝑉)

𝑠∗𝑖

ℎ
𝑖𝑠𝑖 .
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This tells us that, given a choice of trivialization (gauge), 𝑉 -valued tensorial forms on 𝑃 and 𝐸-valued
forms on𝑀 both reduce to 𝑉 -valued forms on𝑀.

In particular, given section 𝜓 ∶ 𝑀 → 𝐸, which looks locally on𝑈𝑖 as

𝜓(𝑥) = [𝑠𝑖(𝑥), 𝜓𝑖(𝑥)]

the above diagram tells us that

𝜓(𝑥) = (ℎ ∘ ℎ−1)(𝜓(𝑥))) = (𝑖𝑠𝑖(𝑥) ∘ 𝑠∗𝑖 )(ℎ−1(𝜓(𝑥))) = [𝑠𝑖(𝑥), 𝑠∗𝑖 (ℎ−1𝜓)(𝑥)],

but since 𝑖𝑠𝑖(𝑥) is an isomorphism, then

𝜓𝑖(𝑥) = 𝑠∗𝑖 (ℎ−1𝜓)(𝑥).

Now apply∇𝜔𝜓. By the previous result,

∇𝜔𝜓(𝑥) = ℎ(d𝜔(ℎ−1𝜓) (𝑥)) = [𝑠𝑖(𝑥), 𝑠∗𝑖 (d𝜔ℎ−1𝜓)(𝑥)].

Therefore, it suffices to find 𝑠∗𝑖 (d𝜔ℎ−1𝜓)(𝑥). For the first term, we have

𝑠∗𝑖 (dℎ−1𝜓) = d𝑠∗𝑖 (ℎ−1𝜓) = d𝜓𝑖.

For the second term we need to be more careful. Let’s evaluate at 𝑥 ∈ 𝑈𝑖 and 𝑉 ∈ 𝑇𝑥𝑀:

𝑠∗𝑖 (𝑇𝑒𝜌 ∘ 𝜔(ℎ−1𝜓))𝑥(𝑉) = (𝑇𝑒𝜌(𝜔𝑠𝑖(𝑥)(𝑠𝑖∗𝑉)))(ℎ−1𝜓(𝑠𝑖(𝑥))) ∶= (𝑇𝑒𝜌 ∘ 𝜔𝑖)𝑥(𝑉)(𝜓𝑖(𝑥)).

Here we have denoted 𝜔𝑖 = 𝑠∗𝑖𝜔 (in consistence with the notation of proposition 1.8). Therefore, the
local expression of the connection on 𝐸 is (dropping the arguments)

∇𝜔𝜓 = [𝑠𝑖, d𝜓𝑖 + (𝑇𝑒𝜌 ∘ 𝜔𝑖)(𝜓𝑖)].

3.4 In physics language
We can reduce the notation a bit more (andmake it a bit more confusing), add coordinates, and obtain
the equations of the “covariant derivative onmatter fields” that is usedbyphysicists. In physics, amatter
field is a (local expression of a) section of the associated bundle 𝐸 to a principal 𝐺-bundle. The group
𝐺 is called the group of local invariance. A section 𝑠 ∶ 𝑈 → 𝑃 is a local gauge, and the local potentials
of a connection are denoted by𝒜 ∶= 𝑠∗𝜔.

The infinitesimal action is not denoted explicitly, so we only write 𝜉 ⋅ 𝑣 instead of 𝑇𝑒𝜌(𝜉)(𝑣), for
𝜉 ∈ 𝔤 and 𝑣 ∈ 𝑉 . Thus, if we choose a basis {𝑒1, … , 𝑒𝑘} of𝑉 , thenwe canwrite the infinitesimal action
as a matrix product:

𝒜 ⋅ 𝑒𝑎 = 𝒜𝑏
𝑎𝑒𝑏,

with 𝒜𝑏
𝑎 ∈ Ω1(𝑈) for all 𝑎, 𝑏. If we have a section Ψ ∶ 𝑀 → 𝐸, then in the local gauge 𝑠 it can

be written as Ψ = [𝑠, 𝜓], with 𝜓 ∶ 𝑈 → 𝑉 . This 𝜓 is called amatter field, and in the basis of 𝑉 , it
becomes

𝜓 = 𝜓𝑎𝑒𝑎.
If we assume that out trivializing cover is also a coordinate atlas, then on the chart𝑈𝑖 we also have

coordinates 𝑥𝜇. Therefore, we write

𝒜𝑏
𝑎 = 𝒜𝑏

𝑎𝜇 d𝑥𝜇 .

Finally, when we apply the connection toΨ

∇𝜔Ψ = [𝑠,𝒟𝜓],

where

𝒟𝜓 = d𝜓 + 𝒜 ⋅ 𝜓
= (𝜕𝜇𝜓𝑎 +𝒜𝑎

𝑏𝜇𝜓𝑏) d𝑥𝜇 ⊗ 𝑒𝑎
∶= 𝒟𝜇𝜓𝑎(d𝑥𝜇 ⊗ 𝑒𝑎).

Here, the operator𝒟𝜇 is called the covariant derivative:

𝒟𝜇 = 𝜕𝜇 +𝒜𝜇.
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